63
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Insights into reaction mechanisms of phosphenium cation and methyleneimine: a theoretical study

ORCID Icon, , , , &
Pages 1073-1079 | Received 13 Dec 2021, Accepted 26 Mar 2022, Published online: 05 Apr 2022

References

  • Harrison, J. F.; Liedtke, R. C.; Liebman, J. F. The Multiplicity of Substituted Acyclic Carbenes and Related Molecules. J. Am. Chem. Soc. 1979, 101, 7162–7168. DOI: 10.1021/ja00518a006.
  • Falvey, D. E.; Cramer, C. J. Aryl- and Alkylnitrenium Ions: Singlet-Triplet Gaps via AB Initio and Semi-Empirical Methods. Tetrahedron Lett 1992, 33, 1705–1708. DOI: 10.1016/S0040-4039(00)91711-8.
  • Berkowitz, J.; Curtiss, L. A.; Gibson, S. T.; Greene, J. P.; Hillhouse, G. L.; Pople, J. A. Photoionization Mass Spectrometric Study and Abinitio Calculations of Ionization and Bonding in P–H Compounds; Heats of Formation, Bond Energies, and the 3B1 – 1A1 Separation in PH +2. J. Chem. Phys. 1986, 84, 375–384. DOI: 10.1063/1.450147.
  • Harrison, J. F. Electronic Structure of the Phosphenium Ions PH2+, HPF+, and PF2+. J. Am. Chem. Soc. 1981, 103, 7406–7413. DOI: 10.1021/ja00415a002.
  • Cheng, H. M.; Lin, C. F.; Chu, S. Y. Distinct pi-Bonding Capability between Phosphinidene and Phosphonium Ion: A Computational Study. J. Phys. Chem. A 2007, 111, 6890–6893. DOI: 10.1021/jp070812i.
  • Thomas, M. G.; Schultz, C. W.; Parry, R. W. Synthesis and Characterization of Dicoordinate Phosphorus Cations. Compounds of the Type [(R2N)2P] + [Y]- and Their Congeners. Inorg. Chem. 1977, 16, 994–1001. DOI: 10.1021/ic50171a005.
  • Jason, C. C.; Melbourne, J. S. 1,2-Addition Reaction of a Protic Phosphonium Cation with a Phosphaalkyne. Inorg. Chem. 1996, 35, 3062–3063. DOI: 10.1021/ic951132.
  • David, G.; Niecke, E.; Nieger, M.; Radseck, J.; Schoeller, W. W. Donor Stabilization, Transfer Reactions, and Bonding Properties of a Methylenediylphosphenium Ion. J. Am. Chem. Soc. 1994, 116, 2191–2192. DOI: 10.1021/ja00084a088.
  • Larson, J. W.; McMahon, T. B. Trends in Gas-Phase Fluoride Ion Affinities of Main-Group Oxyfluorides and Fluoride Sulfides. Generation and Characterization of the Fluoride Adducts of FAsO, FPO, FPO2, F2SiO, F4SO, FBO, F2SiS, FPS, FAsS, F2S2, and S2O by Ion Cyclotron Resonance Addition-Elimination Reactions. Inorg. Chem. 1987, 26, 4018–4023. DOI: 10.1021/ic00271a011.
  • Slattery, J. M.; Hussein, S. How Lewis Acidic is Your Cation? Putting Phosphenium Ions on the Fluoride Ion Affinity Scale. Dalton Trans. 2012, 41, 1808–1815. DOI: 10.1039/c1dt11636c.
  • Holger, P. M.; David, E. W. Calculated Dipole Moments for Silicon and Phosphorus Compounds of Astrophysical Interest. J. Phys. Chem. A 2013, 117, 13868–13877. DOI: 10.1021/jp4083807.
  • Dyker, C. A.; Burford, N. Catena-Phosphorus Cations. Chem Asian J. 2008, 3, 28–36. DOI: 10.1002/asia.200700229.
  • Burford, N.; Ragogna, P. J.; McDonald, R.; Ferguson, M. J. Phosphine Coordination Complexes of the Diphenylphosphenium Cation: A Versatile Synthetic Methodology for P-P Bond Formation. J. Am. Chem. Soc. 2003, 125, 14404–14410. DOI: 10.1021/ja036649w.
  • Weigand, J. J.; Holthausen, M.; Fröhlich, R. Formation of [Ph2P5]+, [Ph4P6]2+, and [Ph6P7]3+ Cationic Clusters by Consecutive Insertions of [Ph2p]+ into P-P Bonds of the P4 Tetrahedron. Angew. Chem. Int. Ed. Engl. 2009, 48, 295–298. DOI: 10.1002/anie.200804903.
  • Nicola, E. B.; Ian, G. H.; Elizabeth, H. K. π-Ligand Exchange on Phosphenium Ions:  Reversible Exchange between Free and Coordinated Alkynes in Phosphirenium Salts. Organometallics 2004, 23, 299–302. DOI: 10.1021/om030607z.
  • Breit, B. Probing New Classes of π-Acceptor Ligands for Rhodium Catalyzed Hydroformylation of Styrene. J. Mol. Catal. A: Chem. 1999, 143, 143–154. DOI: 10.1016/S1381-1169(98)00377-X.
  • Tetiana, K.; Chris, S. N-Heterocyclic Carbene-Phosphinidene Adducts: Synthesis, Properties, and Applications. Eur. J. Inorg. Chem 2018, 24, 2734–2754. DOI: 10.1002/ejic.201800459.
  • Michael, A.; Brian, L. S.; Thomas, B. Sterically Tunable Phosphenium Cations:  Synthesis and Characterization of Bis(arylamino)phosphenium Ions, Phosphinophosphenium Adducts, and the First Well-Defined Rhodium Phosphenium Complexes. Organometallics 2000, 19, 4944–4956. DOI: 10.1021/om0005351.
  • Gudat, D.; Haghverdi, A.; Nieger, M. Complexes with Phosphorus Analogues of Imidazoyl Carbenes: unprecedented Formation of Phosphenium Complexes by Coordination Induced P—Cl Bond Heterolysis. J. Organomet. Chem. 2001, 617-618, 383–394. DOI: 10.1016/S0022-328X(00)00624-0.
  • Burck, S.; Gudat, D. Structural Alternatives for the Formation of Halogenophosphine-Phosphenium Complexes. Inorg. Chem. 2008, 47, 315–321. DOI: 10.1021/ic7017049.
  • Cowley, A. H.; Kemp, R. A. Synthesis and Reaction Chemistry of Stable Two-Coordinate Phosphorus Cations (Phosphenium Ions). Chem. Rev. 1985, 85, 367–382. DOI: 10.1021/cr00069a002.
  • Aktaş, H.; Slootweg, C.; Lammertsma, K. Nucleophilic Phosphinidene Complexes: Access and Applicability. Angew. Chem. Int. Ed. Engl. 2010, 49, 2102–2113. DOI: 10.1002/anie.200905689.
  • McKellar, A. R. W.; Bunker, P. R.; Sears, T.; Evenson, K. M.; Saykally, R. J.; Langhoff, S. R. Far Infrared Laser Magnetic Resonance of Singlet Methylene: Singlet–Triplet Perturbations, Singlet–Triplet Transitions, and the Singlet–Triplet Splitting a). J. Chem. Phys. 1983, 79, 5251–5264. DOI: 10.1063/1.445713.
  • Nguyen, M. T.; Keer, A. V.; Vanquickenborne, L. G. In Search of Singlet Phosphinidenes. J. Org. Chem. 1996, 61, 7077–7084. DOI: 10.1021/jo9604393.
  • Benko, Z.; Streubel, R.; Nyulaszi, L. Stability of Phosphinidenes—Are They Synthetically Accessible? Dalton Trans. 2006, 36, 4321–4327. DOI: 10.1039/B608276A.
  • Liu, L.; Ruiz, D. A.; Munz, D.; Bertrand, G. A Singlet Phosphinidene Stable at Room Temperature. US Chem 2016, 1, 147–153. DOI: 10.1016/j.chempr.2016.04.001.
  • Kornev, A. N.; Panova, Y. S.; Sushev, V. V. Annelated 3a,6a-Diaza-1,4-Diphosphapentalene as a Form of Stabilized Singlet Phosphinidene. Phosphorus, Sulfur Silicon Relat. Elem 2020, 195, 905–909. DOI: 10.1080/10426507.2020.1804150.
  • Schmidt, U. Angew. Chem. Int. Ed. Engl. 1975, 14, 523–528. DOI: 10.1002/anie.197505231.
  • Mathey, F. Phospha-organic chemistry: panorama and perspectives. Angew. Chem. Int. Ed. Engl. 2003, 42, 1578–1604. DOI: 10.1002/anie.200200557.
  • Cordaro, J.; Stein, D.; Grützmacher, H. A Synthetic Cycle for the Ruthenium-Promoted Formation of 1H-Phosphindoles from Phosphaalkynes. J. Am. Chem. Soc. 2006, 128, 14962–14971. DOI: 10.1021/ja0651198.
  • He, S. G.; Brandon, S. T.; Dennis, J. C. A Stimulated Emission Pumping Study of the First Excited Singlet State of Germylidene (H2C = Ge). J. Chem. Phys. 2004, 121, 257–262. DOI: 10.1063/1.1758699.
  • Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B Condens. Matter. 1988, 37, 785–789. DOI: 10.1103/PhysRevB.37.785.
  • Zhao, Y.; Wang, W. H.; Feng, W. L.; Wang, W. L.; Li, P. Theoretical Insights into the Interaction Mechanisms between Nitric Acid and Nitrous Oxide Initiated by an Excess Electron. J Phys Chem A 2018, 122, 7312–7319. DOI: 10.1021/acs.jpca.8b04775.
  • Wei, W. J.; Wang, W. H.; Xu, K. N.; Feng, W. L.; Li, X. P.; Li, P. Theoretical Insights into the Reaction Mechanisms between 2,3,7,8-Tetrachlorodibenzofuran and the Methylidyne Radical. RSC Adv. 2018, 8, 21150–21154. DOI: 10.1039/C8RA03046D.
  • Xu, K.; Wang, W. W.; Wei, W. J.; Feng, W. L.; Sun, Q.; Li, P. Insights into the Reaction Mechanism of Criegee Intermediate CH 2 OO with Methane and Implications for the Formation of Methanol. J. Phys. Chem. A 2017, 121, 7236–7245. DOI: 10.1021/acs.jpca.7b05858.
  • Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; et al. Gaussian 98, Revision A.9; Gaussian, Inc.: Pittsburgh, PA, 1998.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.