318
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

A one pot synthesis and characterization of intrinsically fluorescent cross-linked polyphosphazene nanospheres

Pages 810-818 | Received 29 Dec 2021, Accepted 26 Apr 2022, Published online: 05 May 2022

References

  • Palabıyık, D.; Mutlu Balcı, C.; Beşli, S. The Syntheses of Pyrazole Amine Substituted Cyclotriphosphazenes: Spectroscopic and Crystallographic Characterizations. Phosphorus Sulfur Silicon Relat. Elem. 2021, 196, 168–175. DOI: 10.1080/10426507.2020.1825432.
  • Allcock, H. R. Recent Developments in Polyphosphazene Materials Science. Curr. Opin. Solid State Mater. Sci. 2006, 10, 231–240. DOI: 10.1016/j.cossms.2007.06.001.
  • Mehmood, S.; Wang, L.; Yu, H.; Haq, F.; Fahad, S.; Amin, B.; Uddin, M. A.; Haroon, M. Recent Progress on the Preparation of Cyclomatrix-Polyphosphazene Based Micro/Nanospheres and Their Application for Drug Release. Chem. Select. 2020, 5, 5939–5958. DOI: 10.1002/slct.201904844.
  • Wan, C.; Huang, X. Cyclomatrix Polyphosphazenes Frameworks (Cyclo-Pops) and Therelated Nanomaterials: Synthesis, Assembly and Functionalisation. Mater. Today Commun. 2017, 11, 38–60. DOI: 10.1016/j.mtcomm.2017.02.001.
  • Onder, A.; Ozay, H. Synthesis and Characterization of Biodegradable and Antioxidant Phosphazene-Tannic Acid Nanospheres and Their Utilization as Drug Carrier Material. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 120, 111723. DOI: 10.1016/j.msec.2020.111723.
  • Wang, D.; Zhou, N.; Zhang, N.; Zhi, Z.; Shao, Y.; Meng, L.; Yu, D. Facile Preparation of Ph/Redox Dual-Responsive Biodegradable Polyphosphazene Prodrugs for Effective Cancer Chemotherapy. Colloids Surf. B Biointerfaces 2021, 200, 111573. DOI: 10.1016/j.colsurfb.2021.111573.
  • Ma, Z.; Wang, Y.; Liu, M.; Luo, Y.; Xie, X.; Xiong, Z. Highly Efficient Uranium (VI) Removal from Aqueous Solution Using Poly (Cyclotriphosphazene‑co‑4,4′‑Diaminodiphenyl‑Ether) Crosslinked Microspheres. J. Radioanal. Nucl. Chem. 2019, 321, 1093–1107. DOI: 10.1007/s10967-019-06681-9.
  • Zhang, Y.; Cui, J.; Wang, L.; Yu, H.; Li, F.; Yang, B.; Guo, J.; Mu, B.; Tian, L. Cross-Linked Salen-Based Polyphosphazenes (Salen-Pzns) Enhancing the Fire Resistance of Epoxy Resin Composites. J. Appl. Polym. Sci. 2021, 138, 49727. DOI: 10.1002/app.49727.
  • Tarassoli, A.; Sedaghat, T.; Ansari‑Asl, Z. New Phosphazene Nanospheres Anchored Fe(III), Co(II) and Cu(II) Schiff Base Complexes as Efficient Catalysts in Oxidation of Phenol. J. Iran. Chem. Soc. 2019, 16, 1761–1771. DOI: 10.1007/s13738-019-01649-8.
  • Wei, W.; Lu, R.; Tang, S.; Liu, X. Highly Cross-Linked Fluorescent Poly(Cyclotriphosphazene-co-Curcumin) Microspheres for the Selective Detection of Picric Acid in Solution Phase. J. Mater. Chem. A 2015, 3, 4604–4611. DOI: 10.1039/C4TA06828A.
  • Singh, H.; Bamrah, A.; Bhardwaj, S. K.; Deep, A.; Khatri, M.; Kim, K. H.; Bhardwaj, N. Nanomaterial-Based Fluorescent Sensors for the Detection of Lead Ions. J. Hazard Mater. 2021, 407, 124379. DOI: 10.1016/j.jhazmat.2020.124379.
  • Huang, J.; Wang, J.; Li, D.; Chen, P.; Liu, H. B. Terthiophene‑Functionalized Mesoporous Silica‑Based Fuorescence Sensor for the Detection of Trace Methyl Orange in Aqueous Media. Mikrochim Acta 2021, 188, 410. DOI: 10.1007/s00604-021-05063-x.
  • Bryden, M. A.; Colman, E. Z. Organic Thermally Activated Delayed Fluorescence (TADF) Compounds Used in Photocatalysis. Chem. Soc. Rev. 2021, 50, 7587–7680. DOI: 10.1039/d1cs00198a.
  • Khan, S. A.; Ullah, Q.; Almalki, A. S. A.; Kumar, S.; Obaid, R. J.; Alsharif, M. A.; Alfaifi, S. Y.; Hashmi, A. A. Synthesis and Photophysical Investigation of (BTHN) Schiff Base as off-Oncd2+Fluorescent Chemosensor and Its Live Cell Imaging. J. Mol. Liq. 2021, 328, 115407. DOI: 10.1016/j.molliq.2021.115407.
  • Wang, D.; Zhang, Y.; Zhai, M.; Huang, Y.; Li, H.; Liu, X.; Gong, P.; Liu, Z.; You, J. Fluorescence Turn-off Magnetic Fluorinated Graphene Composite with High NIR Absorption for Targeted Drug Delivery. ChemNanoMat. 2021, 7, 71–77. DOI: 10.1002/cnma.202000539.
  • Zhang, C.; Zhang, D.; Bin, Z.; Liu, Z.; Zhang, Y.; Lee, H.; Kwon, J. H.; Duan, L. Color-Tunable All-Fluorescent White Organic Light-Emitting Diodes with a High External Quantum Efficiency over 30% and Extended Device Lifetime. Adv. Mater. 2021, 2103102. DOI: 10.1002/adma.202103102.
  • Wang, Z.; Tang, M. The Cytotoxicity of Core-Shell or Non-Shell Structure Quantum Dots and Reflection on Environmental Friendly: A Review. Environ. Res. 2021, 194, 110593. DOI: 10.1016/j.envres.2020.110593.
  • Gidwani, B.; Sahu, V.; Shukla, S. S.; Pandey, R.; Joshi, V.; Jain, V. K.; Vyas, A. Quantum Dots: Prospectives, Toxicity, Advances and Applications. J. Drug. Deliv. Sci. Technol. 2021, 61, 102308. DOI: 10.1016/j.jddst.2020.102308.
  • Demchenko, A. P. Photobleaching of Organic Fluorophores: Quantitative Characterization, Mechanisms, Protection. Methods Appl. Fluoresc. 2020, 8, 022001. DOI: 10.1088/2050-6120/ab7365.
  • Vogelsang, J.; Kasper, R.; Steinhauer, C.; Person, B.; Heilemann, M.; Sauer, M.; Tinnefeld, P. A Reducing and Oxidizing System Minimizes Photobleaching and Blinking of Fluorescent Dyes. Angew. Chem. Int. Ed. Engl. 2008, 47, 5465–5469. DOI: 10.1002/anie.200801518.
  • Rosiuk, V.; Runser, A.; Klymchenko, A.; Reisch, A. Controlling Size and Fluorescence of Dye-Loaded Polymer Nanoparticles through Polymer Design. Langmuir 2019, 35, 7009–−7017. DOI: 10.1021/acs.langmuir.9b00721.
  • Andreiuk, B.; Reisch, A.; Pivovarenko, V. G.; Klymchenko, A. S. An Aluminium-Based Fluorinated Counterion for Enhanced Encapsulation and Emission of Dyes in Biodegradable Polymer Nanoparticles. Mater. Chem. Front. 2017, 1, 2309–2316. DOI: 10.1039/C7QM00248C.
  • Kohle, F. F. E.; Hinckley, J. A.; Wiesner, U. B. Dye Encapsulation in Fluorescent Core–Shell Silica Nanoparticles as Probed by Fluorescence Correlation Spectroscopy. J. Phys. Chem. C. 2019, 123, 9813–9823. DOI: 10.1021/acs.jpcc.9b00297.
  • Landström, A.; Leccese, S.; Abadian, H.; Lambert, J.-F.; Concina, I.; Protti, S.; Seitsonen, A. P.; Mezzetti, A. Fluorescent Silica MCM-41 Nanoparticles Based on Flavonoids: Direct Post-Doping Encapsulation and Spectral Characterization. Dyes. Pigm. 2021, 185, 108870. DOI: 10.1016/j.dyepig.2020.108870.
  • Bell, N. C.; Doyle, S. J.; Battistelli, G.; LeGuyader, C. L. M.; Thompson, M. P.; Poe, A. M.; Rheingold, A.; Moore, C.; Montalti, M.; Thayumanavan, S.; et al. Dye Encapsulation in Polynorbornene Micelles. Langmuir 2015, 31, 9707–9717. DOI: 10.1021/acs.langmuir.5b01822.
  • Yeroslavsky, G.; Umezawa, M.; Okubo, K.; Nigoghossian, K.; Thi Kim Dung, D.; Miyata, K.; Kamimura, M.; Soga, K. Soga, K Stabilization of Indocyanine Green Dye in Polymeric Micelles for NIR-II Fluorescence Imaging and Cancer Treatment. Biomater. Sci. 2020, 8, 2245–2254. DOI: 10.1039/C9BM02010A.
  • Lohse, B.; Bolinger, P. Y.; Stamou, D. Encapsulation Efficiency Measured on Single Small Unilamellar Vesicles. J. Am. Chem. Soc. 2008, 130, 14372–14373. DOI: 10.1021/ja805030w.
  • Sokolov, I.; Volkov, D. O. Ultrabright Fluorescent Mesoporous Silica Particles. J. Mater. Chem. 2010, 20, 4247–4250. DOI: 10.1039/b923135h.
  • Liu, W.; Huang, X.; Wei, H.; Tang, X.; Zhu, L. Intrinsically Fluorescent Nanoparticles with Excellent Stability Based on a Highly Crosslinked Organic–İnorganic Hybrid Polyphosphazene Material. Chem Commun (Camb) 2011, 47, 11447–11449. DOI: 10.1039/c1cc14224k.
  • Pan, T.; Huang, X.; Wei, H.; Wei, W.; Tang, X. Intrinsically Fluorescent Microspheres with Superior Thermal Stability and Broad Ultraviolet-Visible Absorption Based on Hybrid Polyphosphazene Material. Macromol. Chem. Phys. 2012, 213, 1590–1595. DOI: 10.1002/macp.201200099.
  • Hong, S.; Li, J.; Huang, X.; Liu, H. A Facile Approach to Generate Cross-Linked Poly(Cyclotriphosphazene-co-Oxyresveratrol) Nanoparticle with Intrinsically Fluorescence. J. Inorg. Organomet. Polym. 2018, 28, 2258–2263. DOI: 10.1007/s10904-018-0894-8.
  • Meng, L.; Xu, C.; Liu, T.; Li, H.; Lu, Q.; Long, J. One-Pot Synthesis of Highly Cross-Linked Fluorescent Polyphosphazene Nanoparticles for Cell İmaging. Polym. Chem. 2015, 6, 3155–3163. DOI: 10.1039/C5PY00196J.
  • Akram, R.; Arshad, A.; Dar, S. U.; Basharat, M.; Liu, W.; Zhang, S.; Wu, Z.; Wu, D. Biocompatible Fluorescent Polyamine‐Based Cyclophosphazene Hybrid Nanospheres for Targeted Cell İmaging. Polym. Adv. Technol. 2020, 31, 425–432. DOI: 10.1002/pat.4778.
  • Sun, L.; Liu, T.; Li, H.; Yang, L.; Meng, L.; Lu, Q.; Long, J. Fluorescent and Cross-Linked Organic − Inorganic Hybrid Nanoshells for Monitoring Drug Delivery. ACS Appl. Mater. Interfaces 2015, 7, 4990–4997. DOI: 10.1021/acsami.5b00175.
  • Chen, K.; Liu, Y.; Hu, Y.; Yuan, M.; Zheng, X.; Huang, X. Facile Synthesis of Amino-Functionalized Polyphosphazene Microspheres and Their Application for Highly Sensitive Fluorescence Detection of Fe3+. J. Appl. Polym. Sci. 2020, 137, 48937. DOI: 10.1002/app.48937.
  • Hu, Y.; Meng, L.; Lu, Q. “Fastening” Porphyrin in Highly Cross-Linked Polyphosphazene Hybrid Nanoparticles: Powerful Red Fluorescent Probe for Detecting Mercury Ion. Langmuir 2014, 30, 4458–4464. DOI: 10.1021/la500270t.
  • Wang, D.; Hu, Y.; Meng, L.; Wang, X.; Lu, Q. One-Pot Synthesis of Fluorescent and Cross-Linked Polyphosphazene Nanoparticles for Highly Sensitive and Selective Detection of Dopamine in Body Fluids. RSC Adv. 2015, 5, 92762–92768. DOI: 10.1039/C5RA20462C.
  • Wei, W.; Huang, X.; Chen, K.; Tao, Y.; Tang, X. Fluorescent Organic–Inorganic Hybrid Polyphosphazene Microspheres for the Trace Detection of Nitroaromatic Explosives. RSC Adv. 2012, 2, 3765–3771. DOI: 10.1039/c2ra20263h.
  • Zhu, L.; Zhu, Y.; Pan, Y.; Huang, Y.; Huang, X.; Tang, X. Fully Crosslinked Poly[Cyclotriphosphazene-co-(4,40-Sulfonyldiphenol)] Microspheres via Precipitation Polymerization and Their Superior Thermal Properties. Macromol. React. Eng. 2007, 1, 45–52. DOI: 10.1002/mren.200600005.
  • Markuszewski, R.; Diehl, H. The Infrared Spectra and Structures of the Three Solid Forms of Fluorescein and Related Compounds. Talanta 1980, 27, 937–946. DOI: 10.1016/0039-9140(80)80125-1.
  • Süzen, Y.; Metinoğlu Örüm, S. Novel Cyclomatrix-Type Polyphosphazene Microspheres Crosslinked with Octachlorocyclotetraphosphazene: Preparation and Characterization. Anadolu Univ. J. Sci. Technol. A. Appl. Sci. Eng. 2017, 18, 973–987. DOI: 10.18038/aubtda.312012.
  • Elmas, G.; Okumuş, A.; Hökelek, T.; Kılıç, Z. Phosphorus-Nitrogen Compounds. Part 52. The Reactions of Octachlorocyclotetraphosphazene with Sodium 3-(N-Ferrocenylmethylamino)-1-Propanoxide: Investigations of Spectroscopic, Crystallographic and Stereogenic Properties. Inorganica. Chim. Acta 2019, 497, 119106. DOI: 10.1016/j.ica.2019.119106.
  • Sanllorente, S.; Sarabia, L. A.; Ortiz, M. C. Migration Kinetics of Primary Aromatic Amines from Polyamide Kitchenware: Easy and Fast Screening Procedure Using Fluorescence. Talanta 2016, 160, 46–55. DOI: 10.1016/j.talanta.2016.06.060.
  • Özcan, E.; Tümay, S. O.; Keşan, G.; Yeşilot, S.; Çoşut, B. The Novel Anthracene Decorated Dendrimeric Cyclophosphazenes for Highly Selective Sensing of 2,4,6-Trinitrotoluene (TNT). Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 220, 117115. DOI: 10.1016/j.saa.2019.05.020.
  • Xiong, T.; Zhang, Y.; Donà, L.; Gutiérrez, M.; Möslein, A. F.; Babal, A. S.; Amin, N.; Civalleri, B.; Tan, J. C. Tunable Fluorescein-Encapsulated Zeolitic Imidazolate Framework-8 Nanoparticles for Solid-State Lighting. ACS Appl. Nano Mater. 2021, 4, 10, 10321–10333. DOI: 10.1021/acsanm.1c01829.
  • Boonsin, R.; Chadeyron, G.; Roblin, J. P.; Boyer, D.; Mahiou, R. Silica Encapsulated Fluorescein as a Hybrid Dye for Blue-LED Based Lighting Devices. J. Mater. Chem. C 2016, 4, 6562–6569. DOI: 10.1039/C6TC01039C.
  • Łukarska, M.; Jankowska, A.; Gapiński, J.; Valable, S.; Anfray, C.; Ménard, B.; Mintova, S.; Kowalak, S. Encapsulation of Fluorescein into Nanozeolites L and Y. Micropor. Mesopor. Mat. 2018, 260, 70–75. DOI: 10.1016/j.micromeso.2017.10.040.
  • Ali, S.; Zuhra, Z.; Butler, I. S.; Dar, S. U.; Hameed, M. U.; Wu, D.; Zhang, L.; Wu, Z. High-Throughput Synthesis of Cross-Linked Poly(Cyclotriphosphazeneco Bis(Aminomethyl)Ferrocene) Microspheres and Their Performance as a Superparamagnetic, Electrochemical, Fluorescent and Adsorbent Material. Chem. Eng. J. 2017, 315, 448–458. DOI: 10.1016/j.cej.2017.01.049.
  • Basharat, M.; Liu, W.; Zhang, S.; Abbas, Y.; Wu, Z.; Wu, D. Poly(Cyclotriphosphazene-co-Tris(4-Hydroxyphenyl)Ethane) Microspheres with Intrinsic Excitation Wavelength Tunable Multicolor Photoluminescence. Macromol. Chem. Phys. 2019, 220, 1900256. DOI: 10.1002/macp.201900256.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.