111
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

On the analytical response of lead(II) selective electrodes using 1-aroyl-3,3-dimethylthioureas as ionophores: membrane analysis and quantum chemical calculations

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1213-1225 | Received 03 Dec 2021, Accepted 01 May 2022, Published online: 13 Jun 2022

References

  • Lyu, Y.; Gan, S.; Bao, Y.; Zhong, L.; Xu, J.; Wang, W.; Liu, Z.; Ma, Y.; Yang, G.; Niu, L. Contact Ion-Selective Electrodes: Response Mechanisms, Transducer Materials and Wearable Sensors. Membranes 2020, 10, 128. DOI: 10.3390/membranes10060128.
  • Shrivastava, S.; Trung, T. Q.; Lee, N.-E. Recent Progress, Challenges, and Prospects of Fully Integrated Mobile and Wearable Point-of-Care Testing Systems for Self-Testing. Chem. Soc. Rev. 2020, 49, 1812–1866. DOI: 10.1039/C9CS00319C.
  • Ebrahimi, M.; Khalili, N.; Razi, S.; Keshavarz-Fathi, M.; Khalili, N.; Rezaei, J. Effects of Lead and Cadmium on the Immune System and Cancer Progression. J. Environ. Health Sci. Eng. 2020, 18, 335–343. DOI: 10.1007/s40201-020-00455-2.
  • Ravipati, E. S.; Mahajan, N. N.; Sharma, S.; Hatware, K. V.; Patil, K. The Toxicological Effects of Lead and Its Analytical Trends: An Update from 2000 to 2018. Crit. Rev. Anal. Chem. 2021, 51, 87–102. DOI: 10.1080/10408347.2019.1678381.
  • Golcs, Á.; Horváth, V.; Huszthy, P.; Tóth, T. Fast Potentiometric Analysis of Lead in Aqueous Medium under Competitive Conditions Using an Acridono-Crown Ether Neutral Ionophore. Sensors 2018, 18, 1407. DOI: 10.3390/s18051407.
  • Guziński, M.; Lisak, G.; Kupis, J.; Jasiński, A.; Bocheńska, M. Lead(II)-Selective Ionophores for Ion-Selective Electrodes: A Review. Anal. Chim. Acta 2013, 791, 1–12. DOI: 10.1016/j.aca.2013.04.044.
  • Hu, J. B.; Stein, A.; Bühlmann, P. Rational Design of All-Solid-State Ion-Selective Electrodes and Reference Electrodes. Trac- Trends Anal. Chem. 2016, 76, 102–114. DOI: 10.1016/j.trac.2015.11.004.
  • Jackson, D. T.; Nelson, P. N. Preparation and Properties of Some Ion Selective Membranes: A Review. J. Mol. Struct. 2019, 1182, 241–259. DOI: 10.1016/j.molstruc.2019.01.050.
  • Shao, Y.; Ying, Y.; Ping, J. Recent Advances in Solid-Contact Ion-Selective Electrodes: Functional Materials, Transduction Mechanisms, and Development Trends. Chem. Soc. Rev. 2020, 49, 4405–4465. DOI: 10.1039/C9CS00587K.
  • Gupta, V. K.; Ganjali, M. R.; Norouzi, P.; Khani, H.; Nayak, A.; Agarwal, S. Electrochemical Analysis of Some Toxic Metals by Ion-Selective Electrodes. Crit. Rev. Anal. Chem. 2011, 41, 282–313. DOI: 10.1080/10408347.2011.589773.
  • Jasiński, A.; Guziński, M.; Lisak, G.; Bobacka, J.; Bocheńska, M. Solid-Contact Lead(II) Ion-Selective Electrodes for Potentiometric Determination of Lead(II) in Presence of High Concentrations of Na(I), Cu(II), Cd(II), Zn(II), Ca(II) and Mg(II). Sensors. Actuat. B: Chem. 2015, 218, 25–30. DOI: 10.1016/j.snb.2015.04.089.
  • Tang, X.; Wang, P.-Y.; Buchter, G. Ion-Selective Electrodes for Detection of Lead (II) in Drinking Water: A Mini-Review. Environments 2018, 5, 95. DOI: 10.3390/environments5090095.
  • Pérez Marín, L.; Martínez Rubí, Y.; Arias De Fuentes, O.; Fonseca-Ortiz, O.; Otazo-Sánchez, E.; Estévez, O. L.; Fajardo, Y.; Alonso Chamorro, J. Electrodo selectivo a iones plomo basado en un portador móvil neutro. Afinidad 1998, 55, 130–132.
  • Lapasam, A.; Kollipara, M. R. A Survey of Crystal Structures and Biological Activities of Platinum Group Metal Complexes Containing N-Acylthiourea Ligands. Phosphorous, Sulfur Silicon Relat. Elem. 2020, 195, 779–804. DOI: 10.1080/10426507.2020.1764956.
  • Saeed, A.; Qamar, R.; Fattah, T. A.; Flörke, U.; Erben, M. F. Recent Developments in Chemistry, Coordination, Structure and Biological Aspects of 1-(Acyl/Aroyl)-3-(Substituted) Thioureas. Res. Chem. Intermed. 2017, 43, 3053–3093. DOI: 10.1007/s11164-016-2811-5.
  • Saeed, A.; Mustafa, M. N.; Zain-ul-Abideen, M.; Shabir, G.; Erben, M. F.; … Flörke, U. Current Developments in Chemistry, Coordination, Structure and Biological Aspects of 1-(Acyl/Aroyl)-3- (Substituted)Thioureas: Advances Continue. J. Sulfur Chem. 2019, 40, 312–350. DOI: 10.1080/17415993.2018.1551488.
  • Nkabyo, H. A.; Barnard, I.; Koch, K. R.; Luckay, R. C. Recent Advances in the Coordination and Supramolecular Chemistry of Monopodal and Bipodal Acylthiourea-Based Ligands. Coord. Chem. Rev. 2021, 427, 213588. DOI: 10.1016/j.ccr.2020.213588.
  • Manna, A. K.; Mondal, J.; Chandra, R.; Rout, K.; Patra, J. K. A Thio-Urea Based Chromogenic and Fluorogenic Chemosensor for Expeditious Detection of Cu2+, Hg2+ and Ag+ Ions in Aqueous Medium. J. Photochem. Photobiol. A Chem. 2018, 356, 477–488. DOI: 10.1016/j.jphotochem.2018.01.017.
  • Mitrea, D. G.; Cîrcu, V. Synthesis and Characterization of Novel Acylthiourea Compounds Used in Ions Recognition and Sensing in Organic Media. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 258, 119860. DOI: 10.1016/j.saa.2021.119860.
  • Hasan, S.; Hamedan, N. A.; Zaki, H. M. Application of P-Dimethylamino- Benzaldehyde Benzoylthiourea as a Colorimetric Chemosensor for Detection of Cu2+ in Aqueous Solution. Int. J. Chem. Eng. Appl. 2017, 8, 22–27. DOI: 10.18178/ijcea.2017.8.1.625.
  • Zhang, Z.; Lu, S.; Sha, C.; Xu, D. A Single Thiourea-Appended 1,8-Naphthalimide Chemosensor for Three Heavy Metal Ions: Fe3+, Pb2+, and Hg2+. Sens. Actuators B: Chem. 2015, 208, 258–266. DOI: 10.1016/j.snb.2014.10.136.
  • Kalaiyarasi, J.; Haribabu, J.; Gayathri, D.; Gomathi, K.; Bhuvanesh, N. S. P.; Karvembu, R.; Biju, V. M. Chemosensing, Molecular Docking and Antioxidant Studies of 8-Aminoquinoline Appended Acylthiourea Derivatives. J. Mol. Struct. 2019, 1185, 450–460. DOI: 10.1016/j.molstruc.2019.02.098.
  • Cao, Q. Y.; Cao, P. S.; Zhao, X. F.; Liu, J. H.; Wang, Z. W. A New Dinuclear Ferrocene with Amide–Thiourea Binding Sites for Dual Electrochemical Sensing to Hg(II) and Anions. Inorg. Chim. Acta 2014, 419, 147–151. DOI: 10.1016/j.ica.2014.05.012.
  • Satheshkumar, A.; Elango, K. P. Spectral and DFT Studies on Simple and Selective Colorimetric Sensing of Fluoride Ions via Enhanced Charge Transfer Using a Novel Signaling Unit. Dye. Pigm. 2013, 96, 364–371. DOI: 10.1016/j.dyepig.2012.08.014.
  • Kumar, V.; Kaushik, M. P.; Srivastava, A. K.; Pratap, A.; Thiruvenkatam, V.; Row, T. N. G. Thiourea Based Novel Chromogenic Sensor for Selective Detection of Fluoride and Cyanide Anions in Organic and Aqueous Media. Anal. Chim. Acta 2010, 663, 77–84. DOI: 10.1016/j.aca.2010.01.025.
  • Odago, M. O.; Colabello, D. M.; Lees, A. J. A Simple Thiourea Based Colorimetric Sensor for Cyanide Anion. Tetrahedron 2010, 66, 7465–7471. DOI: 10.1016/j.tet.2010.07.006.
  • Otazo-Sánchez, E.; Pérez-Marín, L.; Estévez-Hernández, O.; Rojas-Lima, S.; Alonso-Chamorro, J. Aroylthioureas: New Organic Ionophores for Heavy-Metal Ion Selective Electrodes. J. Chem. Soc, Perkin Trans. 2001, 2, 2211–2218. DOI: 10.1039/b102029n.
  • Lazo-Fraga, A. R.; Vasconcelos-Pacheco, A.; Díaz-García, A.; Bustamante-Sánchez, M.; Estévez-Hernández, O. Evaluación de Diferentes Aroiltioureas Como Ionóforos en Sensores de Plomo (II). Rev. Cuba Quim. 2015, 27, 262–274.
  • Lazo, A. R.; Jiménez, J.; Arada, MdlÁ.; Pedram, M. Y.; Bustamante, M. Construction and Characterization of a Lead (II) Ion Selective Electrode with 1-Furoil-3, 3-Diethylthiourea as Neutral Carrier. Afinidad 2005, 62, 605–610.
  • Pérez-Marín, L.; Ortiz-Macedo, G.; Ávila-Pérez, P.; Otazo-Sánchez, E. Electrodo de Membrana Líquida Sensible a Iones. Afinidad 1999, 56, 397.
  • Wilson, D.; Arada, MdlÁ.; Alegret, S.; del Valle, M. Lead(II) Ion Selective Electrodes with PVC Membranes Based on Two Bis-Thioureas as Ionophores: 1,3-bis(N'-Benzoylthioureido)benzene and 1,3-bis(N'-furoylthioureido)benzene. J. Hazard. Mater. 2010, 181, 140–146. DOI: 10.1016/j.jhazmat.2010.04.107.
  • Estévez-Hernández, O.; Duque, J.; Reguera, E. Structural Features of 1-Furoylthioureas 3-Monosubstituted and 3,3-Disubstituted: Coordination to Cadmium and Analytical Applications. J. Sulfur Chem. 2011, 32, 213–222. DOI: 10.1080/17415993.2011.566926.
  • Tomás-Alonso, F.; Rubio, A. M.; Álvarez, R.; Ortuño, J. A. Dynamic Potential Response and SEM-EDX Studies of Polymeric Inclusion Membranes Based on Ionic Liquids. Int. J. Electrochem. Sci. 2013, 8, 4955–4969.
  • Fraga, A. R. L.; Quintana, J. C.; Destri, G. L.; Giamblanco, N.; Toro, R. G.; Punzo, F. Polymeric Membranes Conditioning for Sensors Applications: Mechanism and Influence on Analytes Detection. J. Solid State Electrochem. 2012, 16, 901–909. DOI: 10.1007/s10008-011-1456-y.
  • Perez‐Marín, L.; Castro, M.; Otazo‐Sánchez, E.; Cisneros, G. A. Density Functional Study of Molecular Recognition and Reactivity of Thiourea Derivatives Used in Sensors for Heavy Metal Polluting Cations. Int. J. Quantum Chem. 2000, 80, 609–622. DOI: 10.1002/1097-461X(2000)80:4/5 < 609::AID-QUA10 > 3.0.CO;2-3.
  • Castro, M.; Cruz, J.; Otazo-Sánchez, E.; Pérez-Marín, L. Theoretical Study of the Hg2+ Recognition by 1,3-Diphenyl-Thiourea. J. Phys. Chem. A 2003, 107, 9000–9007. DOI: 10.1021/jp030768g.
  • Bryantsev, V. S.; Hay, B. P. Conformational Preferences and Internal Rotation in Alkyl- and Phenyl-Substituted Thiourea Derivatives. J. Phys. Chem. A 2006, 110, 4678–4688. DOI: 10.1021/jp056906e.
  • M. Khairul, W.; Abu Hasan, M. F.; Daud, A. I.; Mohamed Zuki, H.; Ku Bulat, K. H.; Abdul Kadir, M. Theoretical and Experimental Investigation of Pyridylthiourea Derivatives as Ionophores for Cu(Ii) Ion Detection. Malaysian J. Anal. Sci. 2016, 20, 73–84. DOI: 10.17576/mjas-2016-2001-08.
  • Ghanei-Motlagh, M.; Fayazi, M.; Taher, M. A. On the Potentiometric Response of Mercury(II) Membrane Sensors Based on Symmetrical Thiourea Derivatives—Experimental and Theoretical Approaches. Sens. Actuat. B: Chem. 2014, 199, 133–141. DOI: 10.1016/j.snb.2014.03.086.
  • Shamsipur, M.; Dezaki, A. S.; Akhond, M.; Sharghi, H.; Paziraee, Z.; Alizadeh, K. Novel PVC-Membrane Potentiometric Sensors Based on a Recently Synthesized Sulfur-Containing Macrocyclic Diamide for Cd2+ Ion. Application to Flow-Injection Potentiometry. J. Hazard. Mater. 2009, 172, 566–573. DOI: 10.1016/j.jhazmat.2009.07.003.
  • Shamsipur, M.; Hosseini, M.; Alizadeh, K.; Talebpour, Z.; Mousavi, M. F.; Ganjali, M. R.; Arca, M.; Lippolis, V. PVC Membrane and Coated Graphite Potentiometric Sensors Based on Et4todit for Selective Determination of Samarium(III). Anal. Chem. 2003, 75, 5680–5686. DOI: 10.1021/ac0205659.
  • Kim, H. J.; Bhuniya, S.; Mahajan, R. K.; Puri, R.; Liu, H.; Ko, K. C.; Lee, J. Y.; Kim, J. S. Fluorescence Turn-On Sensors for HSO4−. Chem. Commun. 2009, 7128–7130. DOI: 10.1039/b918324h.
  • Lakard, B.; Herlem, G.; Herlem, M.; Etcheberry, A.; Morvan, J.; Fahys, B. Spectroscopic and Ab Initio Study of Polymeric Films Used as Chemical Sensors. Surf. Sci 2002, 502-503, 296–303. DOI: 10.1016/S0039-6028(01)01967-7.
  • Abraham, A. A.; Rezayi, M.; Manan, N. S.; Narimani, L.; Rosli, A. N. B.; Alias, Y. A Novel Potentiometric Sensor Based on 1,2-Bis(N’-Benzoylthioureido)Benzene and Reduced Graphene Oxide for Determination of Lead (II) Cation in Raw Milk. Electrochim. Acta 2015, 165, 221–231. DOI: 10.1016/j.electacta.2015.03.003.
  • Demir, S.; Yilmaz, H.; Dilimulati, M.; Andaç, M. An Efficient ab Initio DFT and PCM Assessment of the Potentiometric Selectivity of a Salophen Type Schiff Base. J. Mol. Model. 2014, 20, 2258–2265. DOI: 10.1007/s00894-014-2258-9.
  • Joon, N. K.; Barnsley, J. E.; Ding, R.; Lee, S.; Latonen, R. M.; Bobacka, J.; Gordon, K. C.; Ogawa, T.; Lisak, G. Silver(I)-Selective Electrodes Based on Rare Earth Element Double-Decker Porphyrins. Sens. Actuat. B: Chem. 2020, 305, 127311. DOI: 10.1016/j.snb.2019.127311.
  • Razak, N. H. A.; Tan, L. L.; Hasbullah, S. A.; Heng, L. Y. Reflectance Chemosensor Based on Bis-Thiourea Derivative as Ionophore for Copper(II) Ion Detection. Microchem. J. 2020, 153, 104460. DOI: 10.1016/j.microc.2019.104460.
  • Lazo, A. R.; Bustamante, M.; Jiménez, J.; Arada, M. A.; Yazdani-Pedram, M. Preparation and Study of a 1-Furoyl-3,3-Diethylthiourea Electrode. J. Chil. Chem. Soc. 2006, 51, 975–978. DOI: 10.4067/S0717-97072006000300010.
  • Viltres-Portales, M.; Lazo-Fraga, A. R.; Díaz-García, A.; Plutín- Stevens, A. M.; Cairo, R. R. Estudio Preliminar en la Miniaturización de Electrodos Selectivos a Iones Pb (II) Basados en Derivados de Tiourea. Rev. Cuba Quím. 2017, 29, 379–389.
  • Cairo, R. R.; Stevens, A. M. P.; de Oliveira, T. D. H.; Batista, A. A.; Castellano, E. E.; Duque, J.; Soria, D. B.; Fantoni, A. C.; Corrêa, R. S.; Erben, M. F. Understanding the Conformational Changes and Molecular Structure of Furoyl Thioureas upon Substitution. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 176, 8–17. DOI: 10.1016/j.saa.2016.12.038.
  • Plutı́n, A. M.; Márquez, H.; Ochoa, E.; Morales, M.; Sosa, M.; Morán, L.; Rodrı́guez, Y.; Suárez, M.; Martı́n, N.; Seoane, C. Alkylation of Benzoyl and Furoylthioureas as Polydentate Systems. Tetrahedron 2000, 56, 1533–1539. DOI: 10.1016/S0040-4020(00)00039-9.
  • Pérez, H.; Corrêa, R. S.; Plutín, A. M.; Álvarez, A.; Mascarenhas, Y. N. N-Benzoyl-N',N'-Dimethyl-thio-urea. Acta Crystallogr. Sect E Struct. Rep. Online . 2011, 67, o647. DOI: 10.1107/S1600536811005137.
  • Buck, R. P.; Lindner, E. Recommendations for Nomenclature of Ion-Selective Electrodes (IUPAC Recommendations 1994). Pure Appl. Chem 1994, 66, 2527–2536. DOI: 10.1351/pac199466122527.
  • Lindner, E.; Pendley, B. D. A Tutorial on the Application of Ion-Selective Electrode Potentiometry: An Analytical Method with Unique Qualities, Unexplored Opportunities and Potential Pitfalls; Tutorial. Anal. Chim. Acta 2013, 762, 1–13. DOI: 10.1016/j.aca.2012.11.022.
  • Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Jr., Vreven, T.; Kudin, K. N.; Burant, J. C.; et al. GAUSSIAN, Version 09; Revision D.01; Gaussian, Inc.: Wallingford, Connecticut, CT, 2013.
  • Becke, A. D. Density‐Functional Thermochemistry. I. The Effect of the Exchange‐Only Gradient Correction. J. Chem. Phys. 1992, 96, 2155–2160. DOI: 10.1063/1.462066.
  • Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B Condens. Matter. 1988, 37, 785–789. DOI: 10.1103/PhysRevB.37.785.
  • GaussView, Versión 6.0; Gaussian, Inc.: Wallingford, Connecticut, CT, 2019.
  • Becke, A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A Gen. Phys. 1988, 38, 3098–3100. DOI: 10.1103/PhysRevA.38.3098.
  • Mennucci, B. Polarizable Continuum Model. WIREs Comput. Mol. Sci. 2012, 2, 386–404. DPOI: DOI: 10.1002/wcms.1086.
  • Heidar-Zadeh, F.; Richer, M.; Fias, S.; Miranda-Quintana, R. A.; Chan, M.; Franco-Pérez, M.; González-Espinoza, C. E.; Kim, T. D.; Lanssens, C.; Patel, A. H.; et al. An Explicit Approach to Conceptual Density Functional Theory Descriptors of Arbitrary Order. Chem. Phys. Lett. 2016, 660, 307–312. DOI: 10.1016/j.cplett.2016.07.039.
  • Lisak, G. Reliable Environmental Trace Heavy Metal Analysis with Potentiometric Ion Sensors - Reality or a Distant Dream. Environ. Pollut. 2021, 289, 117882. DOI: 10.1016/j.envpol.2021.117882.
  • Hulanicki, A.; Sokalski, T.; Lewenstam, A. Side Effects in Measurements of Selectivity Coefficients of Solid State Ion Selective Electrodes. Microchim. Acta 1988, 3, 119–129. DOI: 10.1007/BF01236097.
  • Bakker, E.; Bühlmann, P.; Pretsch, E. Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 1. General Characteristics. Chem. Rev. 1997, 97, 3083–3132. DOI: 10.1021/cr940394a.
  • HANNA Instruments. Mediciones de ion selectivo. Línea completa de electrodos ISE. https://www.hannaarg.com/folletos/catalogo_ise.pdf.
  • Metrohm. Ion-selectiveelectrodes (ISE): Manual 8.109.8042EN/2019-03-15. https://partners.metrohm.com/GetDocumentPublic?action=get_dms_document&docid=1422185.
  • Conductronic. PB21508 Electrodo de ionesselectivos (ISE) de plomo (Pb2+). https://www.conductronic.com/producto/pb21508/.
  • Vázquez, R. C.; Fernández, N. F.; Alemán, J. L. Compuestos de coordinación; Pueblo y Educación: La Habana, Cuba, 2013.
  • Cairo, R. R.; Stevens, A. M. P.; de Oliveira, T. D. H. Experimental Crystal Structure Determination [dataset]; 1502060/CCDC, 2016. DOI: 10.5517/ccdc.csd.cc1mf0km.
  • Flörke, U. Experimental Crystal Structure Determination[dataset]; CCDC, 2014. DOI: 10.5517/cc13kb33.
  • Armstrong, R. D.; Horvai, G. Properties of PVC Based Membranes Used in Ion-Selective Electrodes. Electrochim. Acta 1990, 35, 1–7. DOI: 10.1016/0013-4686(90)85028-L.
  • Al Abdel Hamid, A. A. G. Comparative Study: Correlating Extraction Efficiency for Hg(II), Cd(II), and Pb(II) Metal Ions with the Chelate Stability and Total Hardness in Simple Nitrogen Donors. Sep. Sci. Technol. 2017, 52, 1680–1695. DOI: 10.1080/01496395.2017.1298611.
  • Lestard, M. E. D.; Gil, D. M.; Estévez-Hernández, O.; Erben, M. F.; Duque, J. Structural, Vibrational and Electronic Characterization of 1-Benzyl-3-Furoyl-1-Phenylthiourea: An Experimental and Theoretical Study. New J. Chem. 2015, 39, 7459–7471. DOI: 10.1039/C5NJ01210D.
  • Schwade, V. D.; Teixeira, E. I.; dos Santos, F. A.; Bortolotto, T.; Tirloni, B.; Abram, U. Fluorescence Studies and Photocatalytic Application for Hydrogen Production of ZnII and CdII Complexes with Isophthaloylbis(Thioureas). New J. Chem. 2020, 44, 19598–19611. DOI: 10.1039/D0NJ03778H.
  • Fraga, A. R. L.; Collins, A.; Forte, G.; Rescifina, A.; Punzo, F. Structures and Properties in Different Media of N,N-(Diethylcarbamothioyl)Furan-2-Carboxamide: A Ionophore for Sensor Membranes. J. Mol. Struct. 2009, 929, 174–181. DOI: 10.1016/j.molstruc.2009.04.023.
  • Gil, D. M.; Lestard, M. E. D.; Estévez-Hernández, O.; Duque, J.; Reguera, E. Quantum Chemical Studies on Molecular Structure, Spectroscopic (IR, Raman, UV–Vis), NBO and Homo–Lumo Analysis of 1-Benzyl-3-(2-Furoyl)Thiourea. Spectrochim. Acta A 2015, 145, 553–562. DOI: 10.1016/j.saa.2015.02.071.
  • Chattaraj, P. K.; Roy, D. R. Philicity: A Unified Treatment of Chemical Reactivity and Selectivity. Chem. Rev. 2007, 107, 4973–4975. DOI: 10.1021/jp034707u.
  • Saeed, A.; Flörke, U.; Erben, M. F. The Role of Substituents in the Molecular and Crystal Structure of 1-(Adamantane-1-Carbonyl)-3-(Mono)- and 3,3-(Di) Substituted Thioureas. J. Mol. Struct. 2014, 1065, 150–159. DOI: 10.1016/j.molstruc.2014.03.002.
  • Saeed, A.; Flörke, U.; Erben, M. F. A Review on the Chemistry, Coordination, Structure and Biological Properties of 1-(Acyl/Aroyl)-3-(Substituted) Thioureas. J. Sulfur Chem. 2014, 35, 318–355. DOI: 10.1080/17415993.2013.834904.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.