96
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A green and novel method for the preparation of α-aminophosphonates using eggshell as catalyst. X-ray study

, ORCID Icon, , ORCID Icon, , , , , ORCID Icon, & show all
Pages 1248-1254 | Received 07 Mar 2022, Accepted 28 May 2022, Published online: 14 Jun 2022

References

  • Smith, W. W.; Bartlett, P. A. Macrocyclic Inhibitors of Penicillopepsin. 3. Design, Synthesis, and Evaluation of an Inhibitor Bridged between P2 and P1. J. Am. Chem. Soc. 1998, 120, 4622–4628. DOI: 10.1021/ja973713z.
  • Song, B. A.; Jiang, M. G. Recent Advances in Synthesis and Biological Activity of - Aminophosphonic Acids and Their Esters. Chin. J. Org. Chem. 2004, 24, 843–856.
  • Saib, A.; Berrebbah, H.; Berredjem, M.; Djebar, M. R. Cytotoxic Study of Three Derivatives Amidophosphonates on Alternative Cellular Model: Paramecium tetraurelia. Toxicol. Res. 2014, 3, 395–399. DOI: 10.1039/C4TX00033A.
  • Yang, G.; Liu, Z.; Liu, J.; Huazheng, Y. Synthesis and Properties of Novel (1,2,4-Triazolo[1,5]pyrimidine2-Oxyl)Phosphonate Derivatives. Heteroatom Chem. 2000, 11, 313–316. DOI: 10.1002/1098-1071.
  • (a) Yager, K. M.; Taylor, C. M.; Smith, A. B. Asymmetric Synthesis of α-Aminophosphonates via Diastereoselective Addition of Lithium Diethylphosphite to Chelating Imines. J. Am. Chem. Soc. 1994, 116, 9377–9378. DOI: 10.1021/ja00099a084. (b) Lefebvre, I. M.; Evans, S. A. J. Studies toward the Asymmetric Synthesis of α-Aminophosphonic Acids via the Addition of Phosphites to Enantiopure Sulfinimines. J. Org. Chem. 1997, 62, 7532–7533. DOI: 10.1021/jo971394o.
  • Jászay, Z. M.; Németh, G.; Pham, T. S.; Petneházy, I.; Grün, A.; Tőke, L. Catalytic Enantioselective Michael Addition in the Synthesis of α-Aminophosphonates. Tetrahedron: Asymmetry 2005, 16, 3837–3840. DOI: 10.1016/j.tetasy.2005.10.020.
  • Bhagat, S.; Chakraborti, A. K. An Extremely Efficient Three-Component Reaction of Aldehydes/Ketones, Amines, and Phosphites (Kabachnik–Fields Reaction) for the Synthesis of Alpha-Aminophosphonates Catalyzed by Magnesium Perchlorate. J. Org. Chem. 2007, 72, 1263–1270. DOI: 10.1021/jo062140i.
  • (a) Heydari, A.; Karimian, A.; Ipaktschi, J. Lithium Perchlorate/Diethylether Catalyzed Aminophosphonation of Aldehydes. Tetrahedron Lett. 1998, 39, 6729–6732. DOI: 10.1016/S0040-4039(98)01411-7. (b) Kidwai, M.; Bhardwaj, S.; Mishra, N. K.; Jain, A.; Kumar, A.; Mozzumdar, S. Application of Mobilized Cu-Nanoparticles as Heterogeneous Catalyst for the Synthesis of α-Amino Phosphonates via σ2-P Coupling. Catal. Sci. Technol. 2011, 1, 426–430. DOI: 10.1039/C0CY00063A.
  • Fields, E. K. The Synthesis of Esters of Substituted Amino Phosphonic Acids. J. Am. Chem. Soc. 1952, 74, 1528–1531. DOI: 10.1021/ja01126a054.
  • Gao, S.; Tsai, C. H.; Tseng, C.; Yao, C. F. Fluoride Ion Catalyzed Multicomponent Reactions for Efficient Synthesis of 4H-Chromene and N-Arylquinoline Derivatives in Aqueous Media. Tetrahedron 2008, 64, 9143–9149. DOI: 10.1016/j.tet.2008.06.061.
  • Bouzina, A.; Belhani, B.; Aouf, N. E.; Berredjem, M. A. Novel, Rapid and Green Method of Phosphorylation under Ultrasound Irradiation and Catalyst Free Conditions. RSC Adv. 2015, 5, 46272–46275. DOI: 10.1039/C5RA06380A.
  • Belhani, B.; Berredjem, M.; Le Borgne, M.; Bouaziz, Z.; Lebreton, J.; Aouf, N.-E. A One-Pot Three-Component Synthesis of Novel α-Sulfamidophosphonates under Ultrasound Irradiation and Catalyst-Free Conditions. RSC Adv. 2015, 5, 39324–39329. DOI: 10.1039/C5RA03473F.
  • Bechlem, K.; Aissaoui, M.; Belhani, B.; Otmane Rachedi, K.; Bouacida, S.; Bahadi, R.; Djouad, S. E.; Ben Mansour, R.; Bouaziz, M.; Almalki, F.; et al. Synthesis, X-Ray Crystallographic Study and Molecular Docking of New α-Sulfamidophosphonates: POM Analyses of Their Cytotoxic Activity. J. Mol. Struct. 2020, 1210, 127990–127998. DOI: 10.1016/j.molstruc.2020.127990.
  • Azdarpour, A.; Karaei, M. A.; Hamidi, H.; Mohammadian, E.; Barati, M.; Honarvar, B. CO2 Sequestration Using Red Gypsum via pH-Swing Process: Effect of Carbonation Temperature and NH4HCO3 on the Process Efficiency. Int. J. Miner. Process 2017, 169, 27–34. DOI: 10.1016/j.minpro.2017.09.014.
  • Zandieh, H.; Mokhtari, J.; Larijani, K. Synthesis of α-Aminophosphonates Catalyzed by Copper-Based Metal Organic Frameworks. J. Organomet. Chem. 2022, 957, 122156. DOI: 10.1016/j.jorganchem.2021.122156.
  • (a) Mosaddegh, E.; Hassankhani, A. Application and Characterization of Eggshell as a New Biodegradable and Heterogeneous Catalyst in Green Synthesis of 7, 8-Dihydro-4H-Chromen-5(6H)-Ones. Catal. Commun. 2013, 33, 70–75. DOI: 10.1016/j.catcom.2012.12.013. (b) Oulego, P.; Laca, A.; Calvo, S.; Mario, M. Eggshell-Supported Catalysts for the Advanced Oxidation Treatment of Humic Acid Polluted Wastewaters. Water 2019, 12, 100. DOI: 10.3390/w12010100.
  • Kerru, N.; Gummidi, L.; Bhaskaruni, S. V. H.; Maddila, S. N.; Jonnalagadda, S. B. One-Pot Green Synthesis of Novel 5,10-Dihydro-1H-Pyrazolo[1,2-b]Phthalazine Derivatives with Eco-Friendly Biodegradable Eggshell Powder as Efficacious Catalyst. Res. Chem. Intermed. 2020, 46, 3067–3083. DOI: 10.1007/s11164-020-04135-6.
  • Akbarpoor, T.; Khazaei, A.; Seyf, J. Y.; Sarmasti, N.; Gilan, M. M. One-Pot Synthesis of 2-Amino-3-Cyanopyridines and Hexahydroquinolines Using Eggshell-Based Nano-Magnetic Solid Acid Catalyst via Anomeric-Based Oxidation. Res. Chem. Intermed. 2020, 46, 1539–1554. DOI: 10.1007/s11164-019-04049-y.
  • Madhukar, B.; Deshmukh, M. B.; Smita, S.; Morbale, T.; Sachin, S. S.; Swati, D. J. Modified Eggshell Catalyzed, One-Pot Synthesis and Antimicrobial Evaluation of 1,4-Dihydropyridines and Polyhydroquinolines. Der. Pharmacia Lett. 2015, 7, 169–182.
  • (a) Bouzina, A.; Bechlem, K.; Berredjem, H.; Belhani, B.; Becheker, I.; Lebreton, J.; Le Borgne, M.; Bouaziz, Z.; Marminon, C.; Berredjem, M. Synthesis, Spectroscopic Characterization, and in Vitro Antibacterial Evaluation of Novel Functionalized Sulfamidocarbonyloxyphosphonates. Molecules 2018, 23, 1682–1695. DOI: 10.3390/molecules23071682. (b) Bouzina, A.; Berredjem, M.; Aouf, N. E. Ultrasound Assisted Green Synthesis of α-Hydroxyphosphonates under Solvent-Free Conditions. Res Chem Intermed. 2016, 42, 5993–6002. DOI: 10.1007/s11164-015-2420-8.
  • Guerfi, M.; Berredjem, M.; Bouzina, A.; Ben Hadda, T.; Marminon, C.; Otmane Rachedi, K. Novel α-Sulfamidophosphonate Analogues of Fotemustine: efficient Synthesis Using Ultrasound under Solvent-Free Conditions. Monatsh. Chem. 2020, 151, 1859–1865. DOI: 10.1007/s00706-020-02711-5.
  • Bouchareb, F.; Berredjem, M.; Bouzina, A.; Guerfi, M. Ultrasound-Promoted, Rapid and Green Synthesis of Phosphonamide Derivatives under Catalyst and Solvent-Free Conditions. Phosphorus Sulfur Silicon Relat. Elem. 2021, 196, 422–430. DOI: 10.1080/10426507.2020.1854254.
  • Rachedi, K. O.; Ouk, T.-S.; Bahadi, R.; Bouzina, A.; Djouad, S.-E.; Bechlem, K.; Zerrouki, R.; Ben Hadda, T.; Almalki, F.; Berredjem, M. Berredjem, Synthesis, DFT and POM Analyses of Cytotoxicity Activity of α-Amidophosphonates Derivatives: Identification of Potential Antiviral O,O-Pharmacophore site. J. Mol. Struct. 2019, 1197, 196–203. DOI: 10.1016/j.molstruc.2019.07.053.
  • Otmane Rachedi, K.; Bahadi, R.; Aissaoui, M.; Ben Hadda, T.; Belhani, B.; Bouzina, A.; Berredjem, M. DFT Study, POM Analyses and Molecular Docking of Novel Oxazaphosphinanes: Identification of Antifungal Pharmacophore Site. Indones. J. Chem. 2020, 20, 440–450. DOI: 10.22146/ijc.46375.
  • Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro, L.; Giacovazzo, C.; Polidori, G.; Spagna, R. SIR2004: An Improved Tool for Crystal Structure Determination and Refinement. J. Appl. Crystallogr. 2005, 38, 381–388. DOI: 10.1107/S002188980403225X.
  • Sheldrick, G. M. A Short History of SHELX. Acta Crystallogr. A 2008, 64, 112–122. DOI: 10.1107/S0108767307043930.
  • Farrugia, L. J. WinGX and ORTEP for Windows: An Update. J. Appl. Crystallogr. 2012, 45, 849–854. DOI: 10.1107/S0021889812029111.
  • Etter, M. C.; MacDonald, J. C.; Bernstein, J. Graph-Set Analysis of Hydrogen-Bond Patterns in Organic Crystals. Acta Cryst. 1990, B46, 256–262. DOI: 10.1107/S0108768189012929.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.