144
Views
0
CrossRef citations to date
0
Altmetric
Short Communication

Vinyl fluorosulfonamide: a practical vinyl electrophilic reagent for mild and efficient synthesis of ketones under catalyst- and additive-free conditions

, , , , &
Pages 987-991 | Received 23 Mar 2022, Accepted 30 May 2022, Published online: 09 Jun 2022

References

  • Kuan, K. Y.; Singleton, D. A. Isotope Effects and the Mechanism of Photoredox-Promoted [2 + 2] Cycloadditions of Enones. J. Org. Chem. 2021, 86, 6305–6313. DOI: 10.1021/acs.joc.1c00099.
  • Margeson, M. J.; Seeberger, F.; Kelly, J. A.; Leitl, J.; Coburger, P.; Szlosek, R.; Müller, C.; Wolf, R. Expedient Hydrofunctionalisation of Carbonyls and Imines Initiated by Phosphacyclohexadienyl Anions. ChemCatChem 2021, 13, 3761–3764. DOI: 10.1002/cctc.202100651.
  • Sai, M.; Kurouchi, H. Potassium Base-Catalyzed Michael Additions of Allylic Alcohols to α, β-Unsaturated Amides: Scope and Mechanistic Insights. Adv. Synth. Catal. 2021, 363, 3585–3591. DOI: 10.1002/adsc.202100272.
  • Geethapriya, C.; Elumalaiim, K. Mannichbases: An Overview of Heterocyclic Compound with Various Biological Activities. Int. J. Pharm. Sci. Res. 2021, 12, 6151–6165. DOI: 10.13040/ijpsr.0975-8232.12(12).6151-65.
  • Aditi, T.; Anjaneyulu, B.; Singh, B. A. An Overview on Synthesis and Biological Activity of Chalcone Derived Pyrazolines. ChemistrySelect 2021, 6, 12757–12795. DOI: 10.1002/slct.202103779.
  • Prakash, C. Recent Advancement in the Copper Mediated Synthesis of Heterocyclic Amides as Important Pharmaceutical and Agrochemicals. ChemistrySelect 2021, 6, 10274–10322. DOI: 10.1002/slct.202103035.
  • Zhao, H.-Y.; Zhou, M. Q.; Zhang, X. G. Palladium-Catalyzed Carbonylative Cross-Coupling of Difluoroalkyl Halides with Alkylboranes under 1 Atm of CO. Org. Lett. 2021, 23, 9106–9111. DOI: 10.1021/acs.orglett.1c03396.
  • Chenniappan, V. K.; Silwal, S.; Rahaim, R. J. Ni/Ti Dual Catalytic Cross-Coupling of Nitriles and Organobromides to Access Ketones. ACS Catal. 2018, 8, 4539–4544. DOI: 10.1021/acscatal.8b00244.
  • Su, F. Z.; Mathew, S. C.; Lipner, G.; Fu, X. Z.; Antonietti, M.; Blechert, S.; Wang, X. C. mpg-C(3)N(4)-Catalyzed Selective Oxidation of Alcohols Using O(2) and Visible Light. J. Am. Chem. Soc. 2010, 132, 16299–16301. DOI: 10.1021/ja102866p.
  • Fuhshuku, K.; Funa, N.; Akeboshi, T.; Ohta, H.; Hosomi, H.; Ohba, S.; Sugai, T. Access to Wieland-Miescher Ketone in an Enantiomerically Pure Form by a Kinetic Resolution with Yeast-Mediated Reduction. J. Org. Chem. 2000, 65, 129–135. DOI: 10.1021/jo991192n.
  • Xie, Y. J.; Huang, L. L.; Qi, Y. Y.; Hu, J. D.; Song, L. L.; Feng, H. D. A Highly Efficient Metal-Free Hydrocarbonylation of Alkynes with Propargylamines and Water. Green Chem. 2022, 24, 1978–1982. DOI: 10.1039/D1GC04487G.
  • Kutscheroff, M. Ueber die Einwirkung der Kohlenwasserstoffe der Acetylenreihe auf Quecksilberoxyd und dessen Salze. Ber. Dtsch. Chem. Ges. 1884, 17, 13–29. DOI: 10.1002/cber.18840170105.
  • Kutscheroff, M. Ueber eine neue Methode direkter Addition von Wasser (Hydratation) an die Kohlenwasserstoffe der Acetylenreihe. Ber. Dtsch. Chem. Ges. 1881, 14, 1540–1542. DOI: 10.1002/cber.188101401320.
  • Liang, S.; Jasinski, J.; Hammond, G.; Xu, B. Supported Gold Nanoparticle-Catalyzed Hydration of Alkynes under Basic Conditions. Org. Lett. 2015, 17, 162–165. DOI: 10.1021/ol5033859.
  • Lai, J.-W.; Liu, Z.-Y.; Chen, X.-Y.; Zhang, H.; Liu, H.-Y. Hydration of Terminal Alkynes Catalyzed by Cobalt Corrole Complex. Tetrahedron Lett. 2020, 61, 152426. DOI: 10.1016/j.tetlet.2020.152426.
  • Nicolas, R.; Luciana, C.; Kota, Y.; Jose, A.; Francisco, M.; Vito, C.; Joaquin, G.; Javier, G. Deep Eutectic Solvent-Catalyzed Meyer-Schuster Rearrangement of Propargylic Alcohols under Mild and Bench Reaction Conditions. Chem. Commun. 2020, 56, 15165–15168. DOI: 10.1039/D0CC06584F.
  • Lin, H.; Ibrahim, N.; Provot, O.; Alami, M.; Hamze, A. PtO2/PTSA System Catalyzed Regioselective Hydration of Internal Arylalkynes Bearing Electron Withdrawing Groups. RSC Adv. 2018, 8, 11536–11542. DOI: 10.1039/C8RA00564H.
  • Krista, S.; Maris, T. In(III) and Hf(IV) Triflate-Catalyzed Hydration and Catalyst-Free Hydrohalogenation of Aryl Acetylenes in Liquid Sulfur Dioxide. ACS Omega 2018, 3, 18065–18077. DOI: 10.1021/acsomega.8b01630.
  • Liu, W. B.; Wang, H. N.; Li, C.-J. Metal-Free Markovnikov-Type Alkyne Hydration under Mild Conditions. Org. Lett. 2016, 18, 2184–2187. DOI: 10.1021/acs.orglett.6b00801.
  • La Sorella, G.; Sperni, L.; Ballester, P.; Strukul, G.; Scarso, A. Hydration of Aromatic Alkynes Catalyzed by a Self-Assembled Hexameric Organic Capsule. Catal. Sci. Technol. 2016, 6, 6031–6036. DOI: 10.1039/C6CY00307A.
  • Zheng, B. Y.; Jin, X. X.; Liu, J. H.; Cheng, H. Y. Accelerated Metal-Free Hydration of Alkynes within Milliseconds in Microdroplets. ACS Sustain. Chem. Eng. 2021, 9, 4383–4390. DOI: 10.1021/acssuschemeng.1c00887.
  • Tlahuext-Aca, A.; Hopkinson, M. N.; Garza-Sanchez, R. A.; Glorius, F. Alkyne Difunctionalization by Dual Gold/Photoredox Catalysis. Chemistry 2016, 22, 5909–5913. DOI: 10.1002/chem.201600710.
  • Ali, M.; Srivastava, A. K.; Siangwata, S.; Smith, G. S.; Joshi, R. K. Photo Induced Alkyne Hydration Reactions Mediated by a Water Soluble, Reusable Rhodium(I) Catalyst. Catal. Commun. 2018, 115, 78–81. DOI: 10.1016/j.catcom.2018.07.007.
  • Reinhard, J. Acetaldehyde from Ethylene—A Retrospective on the Discovery of the Wacker Process. Angew. Chem. Int. Ed. 2009, 48, 9034–9037. DOI: 10.1002/anie.200903392.
  • Jesus, A.; Vicente, G.; Ivan, L. Markovnikov Wacker-Tsuji Oxidation of Allyl(Hetero)Arenes and Application in a One-Pot Photo-Metal-Biocatalytic Approach to Enantioenriched Amines and Alcohols. Adv. Synth. Catal. 2021, 363, 4096–4108. DOI: 10.1002/adsc.202100351.
  • Ning, X.-S.; Wang, M.-M.; Yao, C.-Z.; Chen, X.-M.; Kang, Y.-B. tert-Butyl Nitrite: Organic Redox Cocatalyst for Aerobic Aldehyde-Selective Wacker-Tsuji Oxidation. Org. Lett. 2016, 18, 2700–2703. DOI: 10.1021/acs.orglett.6b01165.
  • Huang, Q.; Li, Y.-W.; Ning, X.-S.; Jiang, G.-Q.; Zhang, X.-W.; Qu, J.-P.; Kang, Y.-B. Regioselective Wacker-Type Oxidation of Internal Olefins in tBuOH Using Oxygen as the Sole Oxidant and tBuONO as the Organic Redox Cocatalyst. Org. Lett. 2020, 22, 965–969. DOI: 10.1021/acs.orglett.9b04503.
  • Salzmann, K.; Segarra, C.; Albrecht, M. Donor-Flexible Bis(Pyridylidene Amide) Ligands for Highly Efficient Ruthenium-Catalyzed Olefin Oxidation. Angew. Chem. Int. Ed. Engl. 2020, 59, 8932–8936. DOI: 10.1002/anie.202002014.
  • Angela, G.; Xiao, J. Green and Efficient: Iron-Catalyzed Selective Oxidation of Olefins to Carbonyls with O2. J. Am. Chem. Soc. 2015, 137, 8206–8218. DOI: 10.1021/jacs.5b03956.
  • Yi, N. N.; Zhang, H.; Xu, C. H.; Deng, W.; Wang, R. J.; Peng, D. M.; Zeng, Z. B.; Xiang, J. N. Copper/Silver Cocatalyzed Oxidative Coupling of Vinylarenes with ICH2CF3 or ICH2CHF2 Leading to β-CF3/CHF2-Substituted Ketones. Org. Lett. 2016, 18, 1780–1783. DOI: 10.1021/acs.orglett.6b00498.
  • Komori, S.; Yamaguchi, Y.; Murakami, Y.; Kataoka, Y.; Ura, Y. Palladium/Copper-Catalyzed Oxidation of Aliphatic Terminal Alkenes to Aldehydes Assisted by p-Benzoquinone. ChemCatChem 2020, 12, 3946–3955. DOI: 10.1002/cctc.202000472.
  • Lai, J.; Pericàs, M. Manganese/Copper Co-catalyzed Electrochemical Wacker-Tsuji-Type Oxidation of Aryl-Substituted Alkenes . Org. Lett. 2020, 22, 7338–7342. DOI: 10.1021/acs.orglett.0c02670.
  • Liu, K.-J.; Deng, J.-H.; Zeng, T.-Y.; Chen, X.-J.; Huang, Y.; Cao, Z.; Lin, Y.-W.; He, W.-M. 1,2-Diethoxyethane Catalyzed Oxidative Cleavage of Gem-Disubstituted Aromatic Alkenes to Ketones under Minimal Solvent Conditions. Chin. Chem. Lett. 2020, 31, 1868–1872. DOI: 10.1016/j.cclet.2020.01.036.
  • Ou, J. H.; He, S. Y.; Wang, W.; Tan, H.; Liu, K. J. Highly Efficient Oxidative Cleavage of Olefins with O2 under Catalyst-, Initiator- and Additive-Free Conditions. Org. Chem. Front. 2021, 8, 3102–3109. DOI: 10.1039/D1QO00175B.
  • Zhang, Q.-B.; Ban, Y.-L.; Zhou, D.-G.; Zhou, P.-P.; Wu, L.-Z.; Liu, Q. Preparation of α-Acyloxy Ketones via Visible-Light-Driven Aerobic Oxo-Acyloxylation of Olefins with Carboxylic Acids. Org. Lett. 2016, 18, 5256–5259. DOI: 10.1021/acs.orglett.6b02560.
  • Bakulev, V. A.; Beryozkina, T.; Thomas, J.; Dehaen, W. The Rich Chemistry Resulting from the 1,3-Dipolar Cycloaddition Reactions of Enamines and Azides. Eur. J. Org. Chem. 2018, 2018, 262–294. DOI: 10.1002/ejoc.201701031.
  • Yan, F. C.; Liang, H. B.; Song, J.; Cui, J.; Liu, Q.; Liu, S.; Wang, P.; Dong, Y. H.; Liu, H. Palladium-Catalyzed Cyclization-Heck Reaction of Allenamides: An Approach to 3-Methylene-5-Phenyl-1,2,3,4-Tetrahydropyridine Derivatives. Org. Lett. 2017, 19, 86–89. DOI: 10.1021/acs.orglett.6b03364.
  • Ning, Z. T.; Xu, Z.; Liu, R. K.; Du, Z. Y. Cu(OTf)2-Catalyzed Efficient Sulfonylation of Vinyl Azides with Sodium Sulfinates. Synth. Commun.2021, 51, 3492–3500. DOI: 10.1080/00397911.2021.1983603.
  • Liu, Z. H.; Zhang, Z. H.; Zhu, G. Y.; Zhou, Y. Q.; Yang, L.; Gao, W.; Tong, L. L.; Tang, B. Copper-Catalyzed Aldol Reaction of Vinyl Azides with Trifluoromethyl Ketones. Org. Lett.2019, 21, 7324–7328. DOI: 10.1021/acs.orglett.9b02616.
  • Xu, X. J.; Huang, L. H.; Yin, X. Y.; Van der Eycken, E. V.; Feng, H. D. Dual Roles of Ynoates: Desymmetrization of Dicarboxylic Acids Using Trialkylamines as Alkyl Equivalents. Org. Chem. Front. 2018, 5, 2955–2959. DOI: 10.1039/C8QO00919H.
  • Xu, X. J.; Feng, H. D.; Huang, L. H.; Liu, X. H. Direct Amidation of Carboxylic Acids through an Active α-Acyl Enol Ester Intermediate. J. Org. Chem. 2018, 83, 7962–7969. DOI: 10.1021/acs.joc.8b00819.
  • Sun, F. X.; Feng, H. D.; Huang, L. L.; Huang, J. H. Ynoate-Initiated Selective C − N Esterification of Tertiary Amines under Transition-Metal and Oxidant-Free Conditions. Synlett 2021, 32, 713–717. DOI: 10.1055/a-1326-697.
  • Xu, X. J.; Feng, H. D.; Li, H. Q.; Huang, L. H. Enol Ester Intermediate Induced Metal-Free Oxidative Coupling of Carboxylic Acids and Arylboronic Acids. Eur. J. Org. Chem. 2019, 2019, 3921–3928. DOI: 10.1002/ejoc.201900137.
  • Bai, X. Y.; Huang, L. L.; Zhou, P. Y.; Xi, H.; Hu, J. D.; Zuo, Z. C.; Feng, H. D. Selectivity Controlled Hydroamination of Alkynes to Sulfonyl Fluoride Hubs: Development and Application. J. Org. Chem. 2022, 87, 4998–5004. DOI: 10.1021/acs.joc.1c03082.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.