422
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis of novel thiosemicarbazone derivatives as antidiabetic agent with enzyme kinetic studies and antioxidant activity

ORCID Icon, , , &
Pages 1284-1294 | Received 04 Apr 2022, Accepted 06 Jul 2022, Published online: 19 Jul 2022

References

  • Tavaf, Z.; Dangolani, S. K.; Yousefi, R.; Panahi, F.; Shahsavani, M. B.; Khalafi-Nezhad, A. Synthesis of New Curcumin Derivatives as İnfluential Antidiabetic Α-Glucosidase and Α-Amylase İnhibitors with Anti-Oxidant Activity. Carbohydr. Res. 2020, 494, 108069–108010. DOI: 10.1016/j.carres.2020.108069.
  • Kotkar, G. D.; Clement, M. J.; Tilve, A. S.; Shirsat, R. N.; Nadkarni, V. S.; Ghadi, S. C.; Tilve, S. G. Synthesis, Activity and İn Silico Studies of Novel Bisindolylmethanes from Xylochemical 5-Hydroxymethylfurfural as Antidiabetic Agents. J. Mol. Struct. 2022, 1254, 132370–132310. DOI: 10.1016/j.molstruc.2022.132370.
  • Chaudhury, A.; Duvoor, C.; Reddy Dendi, V. S.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N. S.; Montales, M. T.; Kuriakose, K.; et al. Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management. Front. Endocrinol. (Lausanne) 2017, 8, 6–12. DOI: 10.3389/fendo.2017.00006.
  • Zhu, Y.; Zhao, J.; Luo, L.; Gao, Y.; Bao, H.; Li, P.; Zhang, H. Research Progress of Indole Compounds with Potential Antidiabetic Activity. Eur. J. Med. Chem. 2021, 223, 113665–113635. DOI: 10.1016/j.ejmech.2021.113665.
  • Prashantha Kumar, B. R.; Baig, N. R.; Sudhir, S.; Kar, K.; Kiranmai, M.; Pankaj, M.; Joghee, N. M. Discovery of Novel Glitazones İncorporated with Phenylalanine and Tyrosine: Synthesis, Antidiabetic Activity and Structure–Activity Relationships. Bioorg. Chem. 2012, 45, 12–28. DOI: 10.1016/j.bioorg.2012.08.002.
  • Li, X.; Bai, Y.; Jin, Z.; Svensson, B. Food-Derived Non-Phenolic α-Amylase and α-Glucosidase İnhibitors for Controlling Starch Digestion Rate and Guiding Diabetes-Friendly Recipes. LWT – Food Sci. Technol. 2022, 153, 112455–112457. DOI: 10.1016/j.lwt.2021.112455.
  • Taslimi, P.; Gulçin, İ. Antidiabetic Potential: İn Vitro İnhibition Effects of Some Natural Phenolic Compounds On α-Glycosidase and α-Amylase Enzymes. J. Biochem. Mol. Toxicol. 2017, 31, 1–6. DOI: 10.1002/jbt.21956.
  • Öztaşkın, N.; Kaya, R.; Maraş, A.; Şahin, E.; Gülcin, İ.; Göksu, S. Synthesis and Characterization of Novel Bromophenols: Determination of Their Anticholinergic, Antidiabetic and Antioxidant Activities. Bioorg. Chem. 2019, 87, 91–102. DOI: 10.1016/j.bioorg.2019.03.010.
  • Worsztynowicz, P.; Napierała, M.; Białas, W.; Grajek, W.; Olkowicz, M. Pancreatic α-Amylase and Lipase İnhibitory Activity of Polyphenoliccompounds Present in the Extract of Black Chokeberry (Aronia melanocarpa L.). Process Biochem. 2014, 49, 1457–1463. DOI: 10.1016/j.procbio.2014.06.002.
  • Menteşe, E.; Baltaş, N.; Bekircan, O. Synthesis and Kinetics Studies of N′‐(2‐(3,5‐Disubstituted‐4H‐1,2,4‐Triazol‐4‐yl)Acetyl)‐6/7/8‐Substituted‐2‐Oxo‐2H-Chromen-3‐Carbohydrazide Derivatives as Potent Antidiabetic Agents. Arch. Pharm. Chem. Life. Sci. 2019, 352, 1900227–1900227. DOI: 10.1002/ardp.201900227.
  • Yakan, H. Preparation, Structure Elucidation, and Antioxidant Activity of New Bis(thiosemicarbazone) Derivatives. Turk. J. Chem. 2020, 44, 1085–1099. DOI: 10.3906/kim-2002-76.
  • Lekshmi, K.; Sunitha, S.; Nath, R. Antioxidant, Antidiabetic and Anticancer Studies of Nickel Complex of Vanillin-4-Methyl-4-Phenyl-3-Thiosemicarbazone. Mater. Today 2021, 41, 669–675. DOI: 10.1016/j.matpr.2020.05.376.
  • Missioui, M.; Mortada, S.; Guerrab, W.; Serdaroğlu, G.; Kaya, S.; Mague, J. T.; Essassi, E. M.; Faouzi, M. E. A.; Ramli, Y. Novel Antioxidant Quinoxaline Derivative: Synthesis, Crystal Structure, Theoretical Studies, Antidiabetic Activity and Molecular Docking Study. J. Mol. Struct. 2021, 1239, 130484–130411. DOI: 10.1016/j.molstruc.2021.130484.
  • Shehzad, M. T.; Khan, A.; Islam, M.; Hameed, A.; Khiat, M.; Halim, S. A.; Anwar, M. U.; Shah, S. R.; Hussain, J.; Csuk, R.; et al. Synthesis and Urease İnhibitory Activity of 1,4-Benzodioxane-Based Thiosemicarbazones: Biochemical and Computational Approach. J. Mol. Struct. 2020, 1209, 127922–127928. DOI: 10.1016/j.molstruc.2020.127922.
  • Zhang, X.; Qi, F.; Wang, S.; Song, J.; Huang, J. Synthesis, Structure, İn Silico ADME Evaluation and İn Vitro Antioxidant of (E)-N-(4-Ethylphenyl)-2-(İsomeric Methylbenzylidene) Thiosemicarbazone Derivatives. J. Mol. Struct. 2020, 1199, 126972–126979. DOI: 10.1016/j.molstruc.2019.126972.
  • Nehar, O. K.; Mahboub, R.; Louhibi, S.; Roisnel, T.; Aissaoui, M. New Thiosemicarbazone Schiff Base Ligands: Synthesis, Characterization, Catecholase Study and Hemolytic Activity. J. Mol. Struct. 2020, 1204, 127566–127511. DOI: 10.1016/j.molstruc.2019.127566.
  • Osmaniye, D.; Sağlık, B. N.; Levent, S.; et al. Design, Synthesis and Biological Evaluation of New n-Acyl Hydrazones with a Methyl Sulfonyl Moiety as Selective COX-2 İnhibitors. Chem. Biodivers. 2021, 18, 1–12. DOI: 10.1002/cbdv.202100521.
  • Feng, S.; Li, C.; Chen, D.; Zheng, X.; Yun, H.; Gao, L.; Shen, H. C. Discovery of Methylsulfonyl İndazoles as Potent and Orally Active Respiratory Syncytial Virus (RSV) Fusion Inhibitors. Eur. J. Med. Chem. 2017, 138, 1147–1157. DOI: 10.1016/j.ejmech.2017.07.032.
  • Gong, X.; Wang, M.; Ye, S.; Wu, J. Synthesis of 3‐(Methylsulfonyl) Benzo[B]Thiophenes from Methyl(2-Alkynylphenyl)Sulfanes and Sodium Metabisulfite via A Radical Relay Strategy. Org. Lett. 2019, 21, 1156–1160. DOI: 10.1021/acs.orglett.9b00100.
  • Apak, R.; Gorinstein, S.; Böhm, V.; Schaich, K. M.; Özyürek, M.; Güçlü, K. Methods of Measurement and Evaluation of Natural Antioxidant Capacity/Activity (IUPAC Technical Report). Pure Appl. Chem. 2013, 85, 957–998. DOI: 10.1351/PAC-REP-12-07-15.
  • Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717–42713. DOI: 10.1038/srep42717.
  • Ribeiro, A. G.; Almeida, S. M. V. d.; de Oliveira, J. F.; Souza, T. R. C. d. L.; Santos, K. L. D.; Albuquerque, A. P. d.B.; Nogueira, M. C. d. B. L.; Carvalho Junior, L. B. d.; Moura, R. O. d..; da Silva, A. C.; et al. Novel 4-Quinoline-Thiosemicarbazone Derivatives: Synthesis, Antiproliferative Activity, İn Vitro and İn Silico Biomacromolecule İnteraction Studies and Topoisomerase İnhibition. Eur. J. Med. Chem. 2019, 182, 111592–111516. DOI: 10.1016/j.ejmech.2019.111592.
  • Çavuşoğlu, B.; Sağlık, B.; Osmaniye, D.; Levent, S.; Acar Çevik, U.; Karaduman, A.; Özkay, Y.; Kaplancıklı, Z. Synthesis and Biological Evaluation of New Thiosemicarbazone Derivative Schiff Bases as Monoamine Oxidase İnhibitory Agents. Molecules 2017, 23, 60–18. DOI: 10.3390/molecules23010060.
  • Apak, R.; Güçlü, K.; Ozyürek, M.; Karademir, S. E. Novel Total Antioxidant Capacity İndex for Dietary Polyphenols and Vitamins C and E, Using Their Cupric İon Reducing Capability in the Presence of Neocuproine: CUPRAC Method. J. Agric. Food Chem. 2004, 52, 7970–7981. DOI: 10.1021/jf048741x.
  • Benzie, I. F. F.; Strain, J. J. Ferric Reducing/Antioxidant Power Assay: Directmeasure of Total Antioxidant Activity of Biological Fluids and Modified Versionfor Simultaneous Measurement of Total Antioxidant Power and Ascorbic Acid Concentration. Methods Enzymol. 1999, 299, 15–27. DOI: 10.1016/s0076-6879(99)99005-5[9916193.
  • Baltas, N. Investigation of a Wild Pear Species (Pyrus elaeagnifolia subsp. Elaeagnifolia Pallas) from Antalya, Turkey: Polyphenol Oxidase Properties and Anti-Xanthine Oxidase, Anti-Urease, and Antioxidant Activity. Int. J. Food Prop. 2017, 20, 585–595. DOI: 10.1080/10942912.2016.1171777.
  • Brand-Williams, W.; Cuvelier, M. E.; Berset, C. Use of a free-radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. DOI: 10.1016/S0023-6438(95)80008-5.
  • Özil, M.; Parlak, C.; Baltaş, N. A Simple and Efficient Synthesis of Benzimidazoles Containing Piperazine or Morpholine Skeleton at C-6 Position As Glucosidase İnhibitors with Antioxidant Activity. Bioorg. Chem. 2018, 76, 468–477. DOI: 10.1016/j.bioorg.2017.12.019.
  • Baltaş, N. α-Glucosidase and α-Amylase İnhibition of Some Ethanolic Propolis Samples. U. Bee J. 2021, 21, 1–7. DOI: 10.31467/uluaricilik.877301.
  • Lineweaver, H.; Burk, D. The Determination of Enzyme Dissociation Constant. J. Am. Chem. Soc. 1934, 56, 658–661. DOI: 10.1021/ja01318a036.
  • Unnikrishnan, P. S.; Suthindhiran, K.; Jayasri, M. A. Alpha-Amylase İnhibition and Antioxidant Activity of Marine Green Algae and its Possible Role in Diabetes Management. Phcog. Mag. 2015, 11, 511–515. DOI: 10.4103/0973-1296.172954.
  • Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. DOI: 10.1002/jcc.21256.
  • Ravindranath, P. A.; Forli, S.; Goodsell, D. S. AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility. PLOS Comput. Biol. 2015, 11, 1–28. DOI: 10.1371/journal.pcbi.1004586.
  • Dassault systèmes BIOVIA. Discovery Studio Modeling Environment. Release 2020. Dassault Systèmes: San Diego, 2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.