461
Views
0
CrossRef citations to date
0
Altmetric
Review

Organoselenium compounds. Synthesis, application, and biological activity

ORCID Icon & ORCID Icon
Pages 1179-1212 | Received 15 Sep 2021, Accepted 26 Aug 2022, Published online: 08 Sep 2022

References

  • Wirth, T. Organoselenium Chemistry; Wiley‐VCH Verlag GmbH & Co. KGaA: Cardiff, 2011.
  • Gandin, V.; Khalkar, P.; Braude, J.; Fernandes, A. P. Organic Selenium Compounds as Potential Chemotherapeutic Agents for Improved Cancer Treatment. Free Radic. Biol. Med. 2018, 127, 80–97. DOI: 10.1016/j.freeradbiomed.2018.05.001.
  • Hossain, S. U.; Sengupta, S.; Bhattacharya, S. Synthesis and Evaluation of Antioxidative Properties of a Series of Organoselenium Compounds. Bioorg. Med. Chem. 2005, 13, 5750–5758. DOI: 10.1016/j.bmc.2005.06.011.
  • Andrade, L. H.; Silva, A. V. First Chemoenzymatic Synthesis of Organoselenium Amines and Amides. Tetrahedron: Asymmetry. 2008, 19, 1175–1181. DOI: 10.1016/j.tetasy.2008.04.026.
  • Mugesh, G.; Singh, H. B. Synthetic Organoselenium Compounds as Antioxidants: Glutathione Peroxidase Activity. Chem. Soc. Rev. 2000, 29, 347–357. DOI: 10.1039/a908114c.
  • Epp, O.; Ladenstein, R.; Wendel, A. The Refined Structure of the Selenoenzyme Glutathione Peroxidase at 0.2‐nm Resolution. Eur. J. Biochem. 1983, 133, 51–69. DOI: 10.1111/j.1432-1033.1983.tb07429.x.
  • Zhu, C.; Huang, Y. Asymmetric Synthesis of Chiral Organoselenium Compounds. COC. 2006, 10, 1905–1920. DOI: 10.2174/138527206778521240.
  • Back, T. G.; Moussa, Z. New Chiral Auxiliaries for Highly Stereoselective Asymmetric Methoxyselenenylations. Org. Lett. 2000, 2, 3007–3009. DOI: 10.1021/ol000187z.
  • Tiecco, M.; Testaferri, L.; Santi, C.; Tomassini, C.; Marini, F.; Bagnoli, L.; Temperini, A. Asymmetric Azidoselenenylation of Alkenes: A Key Step for the Synthesis of Enantiomerically Enriched Nitrogen‐Containing Compounds. Angew. Chem. 2003, 115, 3239–3241. DOI: 10.1002/ange.200351229.
  • Okamoto, K.; Nishibayashi, Y.; Uemura, S.; Toshimitsu, A. Asymmetric Carboselenenylation Reaction of Alkenes with Aromatic Compounds. Angew. Chem. 2005, 117, 3654–3657. DOI: 10.1002/ange.200500573.
  • Tiecco, M.; Testaferri, L.; Santi, C.; Tomassini, C.; Bonini, R.; Marini, F.; Bagnoli, L.; Temperini, A. A Chiral Electrophilic Selenium Reagent to Promote the Kinetic Resolution of Racemic Allylic Alcohols. Org. Lett. 2004, 6, 4751–4753. 10.1021/ol048001+.
  • Nakashima, Y.; Shimizu, T.; Hirabayashi, K.; Kamigata, N. Optically Active Seleninamides: Isolation, Absolute Configuration, and Racemization Mechanism. J. Org. Chem. 2005, 70, 868–873. DOI: 10.1021/jo048302x.
  • Miyake, Y.; Oda, M.; Oyamada, A.; Takada, H.; Ohe, K.; Uemura, S. Asymmetric Imidation of Organic Selenides into Selenimides. J. Organomet. Chem. 2000, 611, 475–487. DOI: 10.1016/S0022-328X(00)00488-5.
  • Bhalla, A.; Sharma, S.; Bhasin, K. K.; Bari, S. S. Convenient Preparation of Benzylseleno‐ and Phenylselenoalkanoic Acids: Reagents for Synthesis of Organoselenium Compounds. Synth. Commun. 2007, 37, 783–793. DOI: 10.1080/00397910601133540.
  • Ollivault-Shiflett, M.; Kimball, D. B.; Silks, L. A. P. Synthesis of Chiral 13C,77Se-Labeled Selones. J. Org. Chem. 2004, 69, 5150–5152. DOI: 10.1021/jo049747o.
  • Ogura, F.; Takimiya, K. Organoselenium Chemistry A Practical Approach, (Organoselenium Chemistry, A Practical Approach 258; Oxford University Press: Oxford, United Kingdom, 1999.
  • Tejchman, W.; Zborowski, K.; Lasocha, W.; M. Proniewicz, L. Selenomaltol-Synthesis, Spectroscopy and Theoretical Calculations. Heterocycles. 2008, 75, 1931–1942. DOI: 10.3987/COM-08-11337.
  • Segi, M.; Zhou, A.; Honda, M. Generation of Selenoaldehydes via Retro Diels–Alder Reaction and Their Behavior in the Reaction with Some Enophiles. Phosphorus Sulfur Silicon Relat. Elem. 2005, 180, 1045–1049. DOI: 10.1080/10426500590906283.
  • Degl’Innocenti, A.; Capperucci, A.; Acciai, M.; Tiberi, C. Silicon-Mediated Synthesis of Selenoaldehydes and Selenoacylsilanes and Their Hetero Diels–Alder Reactions. Phosphorus Sulfur Silicon Relat. Elem. 2009, 184, 1621–1626. DOI: 10.1080/10426500902947989.
  • Gieselman, M. D.; Xie, L.; Van Der Donk, W. A. Synthesis of a Selenocysteine-Containing Peptide by Native Chemical Ligation. Org. Lett. 2001, 3, 1331–1334. DOI: 10.1021/ol015712o.
  • Reich, H. J.; Wollowitz, S. Preparation of α,β‐Unsaturated Carbonyl Compounds and Nitriles by Selenoxide Elimination. Org. React. 1993, 44, 1–296. DOI: 10.1002/0471264180.or044.01.
  • Schreiber, S. L.; Santini, C. Cyclobutene Bridgehead Olefin Route to the American Cockroach Sex Pheromone, periplanone-B. J. Am. Chem. Soc. 1984, 106, 4038–4039. DOI: 10.1021/ja00326a028.
  • Tomoda, S.; Iwaoka, M. Synthesis of Selenium-Containing Binaphthyls and Their Application to the Asymmetric Ring-Opening of Cyclohexene Oxide. J. Chem. Soc., Chem. Commun. 1988, 19, 1283–1284. DOI: 10.1039/c39880001283.
  • Quaderer, R.; Sewing, A.; Hilvert, D. Selenocysteine‐Mediated Native Chemical Ligation. Helv. Chim. Acta. 2001, 84, 1197–1206. DOI: 10.1002/1522-2675(20010516)84:5 < 1197::aid-hlca1197 > 3.0.co;2-#.
  • Sharpless, K.; Lauer, R. F. Mild Procedure for the Conversion of Epoxides to Allylic Alcohols. First Organoselenium Reagent. J. Am. Chem. Soc. 1973, 95, 2697–2699. DOI: 10.1021/ja00789a055.
  • Anderson, J. W.; Barker, G. K.; Drake, J. E.; Rodger, M. Methylseleno-Derivatives of Group IV. J. Chem. Soc., Dalton Trans. 1973, 16, 1716–1724. DOI: 10.1039/dt9730001716.
  • Reich, H. J.; Renga, J. M.; Reich, I. L. Organoselenium Chemistry. Conversion of Ketones to Enones by Selenoxide Syn Elimination. J. Am. Chem. Soc. 1975, 97, 5434–5447. DOI: 10.1021/ja00852a019.
  • Wirth, T. Chiral Selenium Compounds in Organic Synthesis. Tetrahedron. 1999, 55, 1–28. DOI: 10.1016/S0040-4020(98)00946-6.
  • Sun, J.; Yang, M.; Yuan, F.; Jia, X.; Yang, X.; Pan, Y.; Zhu, C. Catalytic Asymmetric Ring‐Opening Reaction of Meso‐Epoxides with Aryl Selenols and Thiols Catalyzed by a Heterobimetallic Gallium‐Titanium‐Salen Complex. Adv. Synth. Catal. 2009, 351, 920–930. DOI: 10.1002/adsc.200800767.
  • Zhu, B.; Zhang, X.; Jia, H.; Li, Y.; Liu, H.; Tan, W. A Highly Selective Ratiometric Fluorescent Probe for 1,4-Dithiothreitol (DTT) Detection. Org. Biomol. Chem. 2010, 8, 1650–1654. DOI: 10.1039/b923754b.
  • Tang, B.; Ding, B.; Xu, K.; Tong, L. Use of Selenium to Detect Mercury in Water and Cells: An Enhancement of the Sensitivity and Specificity of a Seleno Fluorescent Probe Tong. Chemistry. 2009, 15, 3147–3151. DOI: 10.1002/chem.200802165.
  • Panda, S.; Panda, A.; Zade, S. S. Organoselenium Compounds as Fluorescent Probes. Coordin. Chem. Rev. 2015, 300, 86–100. DOI: 10.1016/j.ccr.2015.04.006.
  • Wang, B.; Yu, F.; Li, P.; Sun, X.; Han, K. A BODIPY Fluorescence Probe Modulated by Selenoxide Spirocyclization Reaction for Peroxynitrite Detection and Imaging in Living Cells. Dyes Pigm. 2013, 96, 383–390. DOI: 10.1016/j.dyepig.2012.09.006.
  • Bhaumik, A.; Samanta, S.; Pathak, T. Enantiopure 1,4,5-Trisubstituted 1,2,3-Triazoles from Carbohydrates: Applications of Organoselenium Chemistry. J. Org. Chem. 2014, 79, 6895–6904. DOI: 10.1021/jo5009564.
  • Nishibayashi, Y.; Singh, J. D.; Segawa, K.; Fukuzawa, S.-I.; Uemura, S. J. Synthesis of a New Chiral Nitrogen Containing Diselenide as a Precursor for Selenium Electrophiles. J. Chem. Soc., Chem. Commun. 1994, 9, 1375–1376. DOI: 10.1039/c39940001375.
  • Braga, A. L.; Lüdtke, S. L.; Vargas, F.; Braga, C. R. Catalytic Applications of Chiral Organoselenium Compounds in Asymmetric Synthesis. Synlett. 2006, 2006, 1453–1466. DOI: 10.1055/s-2006-941592.
  • Mlochowski, J. Organoselenium Compounds as the Oxidants and Oxidation Catalysts. Phosphorus Sulfur Silicon Relat. Elem. 1998, 136, 191–204. DOI: 10.1080/10426509808545943.
  • Nishibayashi, Y.; Uemura, S. Selenium Compounds as Ligands and Catalysts. In Organoselenium Chemistry; Springer: Berlin, Heidelberg, 2000; pp 235–255.
  • Młochowski, J.; Brząszcz, M.; Giurg, M.; Palus, J.; Wójtowicz, H. Selenium‐Promoted Oxidation of Organic Compounds: Reactions and Mechanisms. Eur. J. Org. Chem. 2003, 2003, 4329–4339. DOI: 10.1002/ejoc.200300230.
  • Giurg, M.; Syper, L. Diaryl Diselenides and Related Compounds as Oxygen-Transfer Agents. Phosphorus Sulfur Silicon Relat. Elem. 2008, 183, 970–985. DOI: 10.1080/10426500801900956.
  • Freudendahl, D. M.; Santoro, S.; Shahzad, S. A.; Santi, C.; Wirth, T. Green Chemistry with Selenium Reagents: Development of Efficient Catalytic Reactions. Angew. Chem. Int. Ed. Engl. 2009, 48, 8409–8411. DOI: 10.1002/anie.200903893.
  • Młochowski, J.; Lisiak, R.; Wójtowicz‐Młochowska, H. Organoselenium and Organotellurium Oxidation and Reduction; PATAI'S Chemistry of Functional Groups; Wiley Online Library: New York, 2009. DOI: 10.1002/9780470682531.pat0578.
  • Nomoto, A.; Ogawa, A. Preparative Uses of Organoselenium and Organotellurium Compounds. In PATAI'S Chemistry of Functional Groups; Wiley Online Library: New York, 2009. DOI: 10.1002/9780470682531.pat0577.
  • Khurana, J. M.; Dawra, K.; Majumdar, S. An Efficient 1,3-Allylic Carbonyl Transposition of Chalcones. Monatsh. Chem. 2009, 140, 69–72. DOI: 10.1007/s00706-008-0019-0.
  • Rohman, M. R.; Kharkongor, I.; Rajbangshi, M.; Mecadon, H.; Laloo, B. M.; Sahu, P. R.; Kharbangar, I.; Myrboh, B. One‐Pot Synthesis of Unsymmetrical Benzils by Oxidative Coupling Using Selenium Dioxide and p‐Toluenesulfonic Acid Monohydrate. Eur. J. Org. Chem. 2012, 2012, 320–328. DOI: 10.1002/ejoc.201101012.
  • Syper, L.; Młochowski, J. A Covenient Oxidation of Halomethylarenes and Alcohols to Aldehydes with Dimethyl Selenoxide and Potassium Seleninate. Synthesis. 1984, 1984, 747–752. DOI: 10.1055/s-1984-30956.
  • Młochowski, J.; Wójtowicz-Młochowska, H. Developments in Synthetic Application of Selenium(IV) Oxide and Organoselenium Compounds as Oxygen Donors and Oxygen-Transfer Agents. Molecules. 2015, 20, 10205–10243. DOI: 10.3390/molecules200610205.
  • Zhao, D.; Johansson, M.; Bäckvall, J. E. In Situ Generation of Nitroso Compounds from Catalytic Hydrogen Peroxide Oxidation of Primary Aromatic Amines and Their One-Pot Use in Hetero-Diels–Alder Reactions. Eur. J. Org. Chem. 2007, 2007, 4431–4436. DOI: 10.1002/ejoc.200700368.
  • Hondal, R. J.; Nilsson, B. L.; Raines, R. T. Selenocysteine in Native Chemical Ligation and Expressed Protein Ligation. J. Am. Chem. Soc. 2001, 123, 5140–5141. DOI: 10.1021/ja005885t.
  • Quaderer, R.; Sewing, A.; Hilvert, D. Selenocysteine-Mediated Native Chemical Ligation. Helv. Chim. Acta. 2001, 84, 1197–1206. DOI: 10.1002/1522-2675(20010516)84:5 < 1197::AID-HLCA1197 > 3.0.CO;2-%23.
  • Freudendahl, D. M.; Shahzad, S. A.; Wirth, T. Recent Advances in Organoselenium Chemistry. Eur. J. Org. Chem. 2009, 2009, 1649–1664. DOI: 10.1002/ejoc.200801171.
  • De Mesmaeker, A.; Hoffmann, P.; Ernst, B.; Hug, P.; Winkler, T. Stereoselective C-C Bond Formation in Carbohydrates by Radical Cyclization reactions-IV. Application for the Synthesis of α-C(1)-Glucosides. Tetrahedron. Lett. 1989, 30, 6311–6314. DOI: 10.1016/S0040-4039(01)93880-8.
  • Stojanovic, A.; Renaud, P. N,Se-Acetals: Preparation and Use in Diastereoselective Radical Reactions. Helv. Chim. Acta. 1998, 81, 353–373. DOI: 10.1002/hlca.19980810216.
  • Murphy, J. A.; Tripoli, R.; Khan, T. A.; Mali, U. W. Novel Phosphorus Radical-Based Routes to Horsfiline. Org. Lett. 2005, 7, 3287–3289. DOI: 10.1021/ol051095i.
  • Prévost, N.; Shipman, M. Synthesis of Substituted Piperidines, Decahydroquinolines and Octahydroindolizines by Radical Rearrangement Reactions of 2-Alkylideneaziridines. Tetrahedron. 2002, 58, 7165–7175. DOI: 10.1016/S0040-4020(02)00730-5.
  • Srivastava, P.; Engman, L. A Radical Cyclization Route to Cyclic Imines. Tetrahedron Lett. 2010, 51, 1149–1151. DOI: 10.1016/j.tetlet.2009.12.104.
  • Bowman, W. R.; Fletcher, A. J.; Pedersen, J. M.; Lovell, P. J.; Elsegood, M. R. J.; Hernández López, E.; McKee, V.; Potts, G. B. S. Amides as Precursors of Imidoyl Radicals in Cyclization Reactions. Tetrahedron. 2007, 63, 191–203. DOI: 10.1016/j.tet.2006.10.030.
  • Seebach, D.; Peleties, N. Mono‐, Bis‐, and Tris(Phenylseleno)Methyllithium (Selenium‐Stabilized Carbanions). Angew. Chem. Int. Ed. Engl. 1969, 8, 450–451. DOI: 10.1002/anie.196904502.
  • Seebach, D.; Peleties, N. α‐Phenylseleno‐Methyllithiumverbindungen. Chem. Ber. 1972, 105, 511–520. DOI: 10.1002/cber.19721050216.
  • Seebach, D.; Meyer, N.; Beck, A. K. α‐Heterosubstituierte Organyllithiumverbindungen Durch Selen/Lithium‐Austausch; Gezielte Kopplung Von Carbonyl‐Verbindungen. Justus Liebigs Ann. Chem. 1977, 1977, 846–858. DOI: 10.1002/jlac.197719770514.
  • Raucher, S.; Koolpe, G. A. Organoselenium Chemistry. 4. Deprotonations with Potassium Diisopropylamide-Lithium Tert-Butoxide. Alkylation of 1-(Phenylseleno) Alkenes and Bis (Phenylseleno) Acetals. J. Org. Chem. 1978, 43, 3794–3796. DOI: 10.1021/jo00413a044.
  • Reich, H. J.; Shah, S. K.; Chow, F. Selenium Stabilized Carbanions alpha-Lithio Selenoxides as Reagents for the Synthesis of Olefins, Allyl Alcohols, and Dienes. J. Am. Chem. Soc. 1979, 101, 6648–6656. DOI: 10.1021/ja00516a026.
  • Denis, J. N.; Dumont, W.; Krief, A. Regiospecific Synthetic Routes to α-Seleno Carbonyl Compounds and to α,β-Unsaturated Carbonyl Compounds. Tetrahedron Lett. 1976, 17, 453–456. DOI: 10.1016/S0040-4039(00)77880-4.
  • Clive, D. L. J. Modern Organoselenium Chemistry. Tetrahedron. 1978, 34, 1049–1132. DOI: 10.1016/0040-4020(78)80135-5.
  • Reich, H. J. Functional Group Manipulation Using Organoselenium Reagents. Acc. Chem. Res. 1979, 12, 22–30. DOI: 10.1021/ar50133a004.
  • Krief, A. Synthetic Methods Using α-Heterosubstituted Organometallics. Tetrahedron. 1980, 36, 2531–2640. DOI: 10.1016/0040-4020(80)80135-9.
  • Krief, A.; Hevesi, L. Organoselenium Chemistry; Springer: Berlin, 1998.
  • Gough, M. J.; Stelle, J. Comprehensive Organic Functional Group Transformations; Kirby, G. W., Ed.; Pergamon Press: Oxford, 1995; Vol. 4.
  • Murai, T.; Kato, S. Organoselenium Chemistry; Springer: Berlin, 2000.
  • Kato, S. Topics in Current Chemistry; Kato, S., Ed.; Springer: Berlin, 2005; Vol. 251, p 1.
  • Prasad, P. R.; Singh, H. B.; Butcher, R. J. Synthesis, Structure and Reactivity of β-Chalcocyclohexenals: Dichalcogenides and Chalcogenides. J. Organomet. Chem. 2016, 814, 42–56. DOI: 10.1016/j.jorganchem.2016.04.019.
  • Taylor, R. J.; Katritzky, A. R. Comprehensive Organic Functional Group Transformations II; Elsevier: Amsterdam, Netherlands, 2005.
  • Gómez Castaño, J. A.; Romano, R. M.; Beckers, H.; Willner, H.; Boese, R.; Della Védova, C. O. Selenoacetic Acid, CH3C(O)SeH: Preparation, Characterization, and Conformational Properties. Angew. Chem. 2008, 120, 10268–10272. DOI: 10.1002/ange.200803513.
  • Koketsu, M.; Ishihara, H. Thiourea and Selenourea and Their Applications. COS. 2006, 3, 439–455. DOI: 10.2174/157017906778699521.
  • Williams, J. V.; Kotov, N. A.; Savage, P. E. A Rapid Hot-Injection Method for the Improved Hydrothermal Synthesis of CdSe Nanoparticles. Ind. Eng. Chem. Res. 2009, 48, 4316–4321. DOI: 10.1021/ie8007067.
  • Henríquez, R.; Grez, P.; Munoz, E.; Gómez, H.; Badán, J. A.; Marotti, R. E.; Dalchiele, E. A. Optical Properties of CdSe and CdO Thin Films Electrochemically Prepared. Thin Solid Films. 2010, 518, 1774–1778. DOI: 10.1016/j.tsf.2009.09.030.
  • Liu, Y. H.; Wayman, V. L.; Gibbons, P. C.; Loomis, R. A.; Buhro, W. E. Origin of High Photoluminescence Efficiencies in CdSe Quantum Belts. Nano Lett. 2010, 10, 352–357. 10.1021/nl903740p.
  • Abashev, G. G.; Shklyaeva, E. V.; Syutkin, R. V.; Lebedev, K. Y.; Osorgina, I. V.; Romanova, V. A.; Bushueva, A. Y. Synthesis and Investigation of Carbazoles and Fluorenes Containing Tetrathiafulvalene Core. Solid State Sci. 2008, 10, 1710–1719. DOI: 10.1016/j.solidstatesciences.2008.01.013.
  • Fujiwara, S.; Kambe, N. Thio-, Seleno-, and Telluro-Carboxylic Acid Esters; Springer: Berlin, 2005.
  • Chen, Y.; Tian, F.; Song, M.; Lu, S. Facile Synthesis of Selenocarboxamides from Nitriles Using Se/CO/H2O under Atmospheric Pressure. Heteroatom Chem. 2008, 19, 211–214. DOI: 10.1002/hc.20398.
  • Roy, G.; Mugesh, G. Selenium Analogues of Anti-Thyroid Drugs. Phosphorus Sulfur Silicon Relat. Elem. 2008, 183, 908–923. DOI: 10.1080/10426500801898259.
  • Nogueira, C. W.; Zeni, G.; Rocha, J. B. T. Organoselenium and Organotellurium Compounds: Toxicology and Pharmacology. Chem. Rev. 2004, 104, 6255–6285. 10.1021/cr0406559.
  • Wirth, T. Organoselenium Chemistry in Stereoselective Reactions. Angew. Chem. Int. Ed. 2000, 39, 3740–3749. DOI: 10.1002/1521-3773(20001103)39:21 < 3740::AID-ANIE3740 > 3.0.CO;2-N.
  • Khokhar, S. S.; Wirth, T. Selenocyclizations: Control by Coordination and by the Counterion. Angew. Chem. Int. Ed. Engl. 2004, 43, 631–633. DOI: 10.1002/anie.200352884.
  • Petragnani, N.; Stefani, H. A. Tellurium in Organic Synthesis: Second, Updated and Enlarged Edition; Elsevier: Amsterdam, Netherlands, 2010.
  • Zhao, L.; Li, Z.; Wirth, T. Preparation of Novel Chiral Non-Racemic Diselenides and Applications in Asymmetric Synthesis. Eur. J. Org. Chem. 2011, 2011, 176–182. DOI: 10.1002/ejoc.201001272.
  • Mugesh, G.; du Mont, W.-W.; Sies, H. Chemistry of Biologically Important Synthetic Organoselenium Compounds. Chem. Rev. 2001, 101, 2125. DOI: 10.1021/cr000426w.
  • Soriano-García, M. Organoselenium Compounds as Potential Therapeutic and Chemo-Preventive Agents: A Review. Curr. Med. Chem. 2004, 11, 1657–1669. DOI: 10.2174/0929867043365053.
  • Kade, I. J.; da Rocha, J. B. Pharmacology of Organoselenium Compounds: Emphasis on Puzzling Mechanistic Switching from Their Glutathione Peroxidase Mimic In Vivo. Teixeira, Biokemistri. 2012, 24, 1–14.
  • Singh, A. Organotellurium Ligands—Designing and Complexation Reactions. J. Chem. Sci. 2002, 114, 357–366. DOI: 10.1007/BF02703826.
  • Yao, Q.; Kinney, E. P.; Zheng, C. Selenium-Ligated Palladium(II) Complexes as Highly Active Catalysts for Carbon − Carbon Coupling Reactions: The Heck Reaction. Org. Lett. 2004, 6, 2997–2999. DOI: 10.1021/ol0486977.
  • Molter, A.; Mohr, F. Gold Complexes Containing Organoselenium and Organotellurium Ligands Coord. Chem. Rev. 2010, 254, 19–45. DOI: 10.1016/j.ccr.2009.09.017.
  • Torubaev, Y.; Pasynskii, A.; Mathur, P. Organotellurium Halides: New Ligands for Transition Metal Complexes. Coord. Chem. Rev. 2012, 256, 709–721. DOI: 10.1016/j.ccr.2011.11.011.
  • Casado, J.; Moreno Oliva, M.; Ruiz Delgado, M. C.; Ponce Ortiz, R.; Joaquín Quirante, J.; López Navarrete, J. T.; Takimiya, K.; Otsubo, T. Hybrid Organic Semiconductors Including Chalcogen Atoms in π-Conjugated Skeletons. Tuning of Optical, Redox, and Vibrational Properties by Heavy Atom Conjugation. J. Phys. Chem. A. 2006, 110, 7422–7430. 10.1021/jp061154p.
  • Dadvand, A.; Cicoira, F.; Chernichenko, K. Y.; Balenkova, E. S.; Osuna, R. M.; Rosei, F.; Nenajdenko, V. G.; Perepichka, D. F. Heterocirculenes as a New Class of Organic Semiconductors. Chem. Commun. 2008, 42, 5354–5356. DOI: 10.1039/b809259a.
  • Brutchey, R. L. Diorganyl Dichalcogenides as Useful Synthons for Colloidal Semiconductor Nanocrystals. Acc. Chem. Res. 2015, 48, 2918–2926. DOI: 10.1021/acs.accounts.5b00362.
  • Silvestre, F.; Danielski, L. G.; Michels, M.; Florentino, D.; Vieira, A.; Souza, L.; Cardoso, L. C.; Schraiber, R.; Rezin, G. T.; Vuolo, F.; et al. Effects of Organoselenium Compounds on Early and Late Brain Biochemical Alterations in Sepsis-Survivor Rats. Neurotox. Res. 2014, 26, 382–391. 10.1007/s12640-014-9475-y.
  • Rusetskaya, N. Y.; Borodulin, V. B. Biological Activity of Organoselenium Compounds in Heavy Metal Intoxication. Biochem. Moscow Suppl. Ser. B. 2015, 9, 45–57. DOI: 10.1134/S1990750815010072.
  • Ye, S.; Zhang, J.; Liu, Z.; Zhang, Y.; Li, J.; Li, Y. O. Biosynthesis of Selenium Rich Exopolysaccharide (Se-EPS) by Pseudomonas PT-8 and Characterization of Its Antioxidant Activities. Carbohydr. Polym. 2016, 142, 230–239. DOI: 10.1016/j.carbpol.2016.01.058.
  • Aydin, J.; Selander, N.; Szabo, K. J. Strategies for Fine-Tuning the Catalytic Activity of Pincer-Complexes. Tetrahedron Lett. 2006, 47, 8999–9001. DOI: 10.1016/j.tetlet.2006.08.141.
  • Henríquez, R.; Grez, P.; Munoz, E.; Gómez, H.; Badán, J. A.; Marotti, R. E.; Dalchiele, E. A. Optical Properties of CdSe and CdO Thin Films Electrochemically Prepared. Thin Solid Films. 2010, 518, 1774–1778. DOI: 10.1016/j.tsf.2009.09.030.
  • Godoi, M.; Paixao, M. W.; Braga, A. L. Chiral Organoselenium-Transition-Metal Catalysts in Asymmetric Transformations. Dalton Trans. 2011, 40, 11347–11355. 10.1039/C1DT11022E.
  • Kumar, A.; Rao, G. K.; Kumar, S.; Singh, A. K. Formation and Role of Palladium Chalcogenide and Other Species in Suzuki–Miyaura and Heck C–C Coupling Reactions Catalyzed with Palladium(II) Complexes of Organochalcogen Ligands: Realities and Speculations. Organometallics. 2014, 33, 2921–2943. DOI: 10.1021/om4007196.
  • Kumar, S.; Saleem, F.; Singh, A. K. Click’ Generated 1,2,3-Triazole Based Organosulfur/Selenium Ligands and Their Pd(II) and Ru(II) Complexes: Their Synthesis, Structure and Catalytic Applications. Dalton Trans. 2016, 45, 11445–11458. DOI: 10.1039/c6dt01406b.
  • Rooseboom, M.; Vermeulen, N. P. E.; Durgut, F.; Commandeur, J. N. M. Comparative Study on the Bioactivation Mechanisms and Cytotoxicity of Te-Phenyl-l-Tellurocysteine, Se-Phenyl-l-Selenocysteine, and S-Phenyl-l-Cysteine. Chem. Res. Toxicol. 2002, 15, 1610–1618. DOI: 10.1021/tx020034f.
  • Ibrahim, M.; Hassan, W.; Deobald, A. M.; Braga, A. L.; Rocha, J. B. An Organoselenium Drug with Antioxidant Activity and Free Radical Scavenging Capacity In Vitro. Biol. Trace Elem. Res. 2012, 149, 399–404. DOI: 10.1007/s12011-012-9440-7.
  • Wirth, T. Small Organoselenium Compounds: More than Just Glutathione Peroxidase Mimics. Angew. Chem. Int. Ed. Engl. 2015, 54, 10074–10076. DOI: 10.1002/anie.201505056.
  • Doering, M.; Ba, L. A.; Lilienthal, N.; Nicco, C.; Scherer, C.; Abbas, M.; Zada, A. A. P.; Coriat, R.; Burkholz, T.; Wessjohann, L.; et al. Synthesis and Selective Anticancer Activity of Organochalcogen Based Redox Catalysts. J. Med. Chem. 2010, 53, 6954–6963. 10.1021/jm100576z.
  • Bhattacharya, A.; Turowski, S. G.; Dominguez-San Martin, I.; Rajput, A.; Rustum, Y. M.; Hoffman, R. M.; Seshadri, M. New Organoselenium Compounds with Intramolecular Se⋯O/Se⋯H Interactions: NMR and Theoretical Studies. Anticancer Res. 2011, 31, 387–394. DOI: 10.1016/j.molstruc.2017.11.054.
  • Wang, Z.; Fan, Y.-Q.; Shi, L.; Xu, Y.-G. Synthesis, Crystal Structure, and Biological Activities of a Zn(II) Complex with a Se Substituted Schiff Base. J. Coord. Chem. 2013, 66, 2032–2038. DOI: 10.1080/00958972.2013.797573.
  • Shaaban, S.; Arafat, M. A.; Gaffer, H. E.; Hamama, W. S. Synthesis and anti-Tumor Evaluation of Novel Organoselenocyanates and Symmetrical Diselenides Dyestuffs. Der Pharma Chem. 2014, 6, 186–193.
  • Shen, L.; Shin, K.-M.; Lee, K.-T.; Jeong, J.-H. Synthesis of New Diselenide Compounds as Anti-Inflammatory Agents. Arch. Pharm. Res. 2004, 27, 816–819. 10.1007/BF02980171.
  • Ghisleni, G.; Kazlauckas, V.; Both, F. L.; Pagnussat, N.; Mioranzza, S.; Rocha, J. B. T.; Souza, D. O.; Porciúncula, L. O. Diphenyl Diselenide Exerts Anxiolytic-like Effect in Wistar Rats: Putative Roles of GABAA and 5HT Receptors. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2008, 32, 1508–1515. DOI: 10.1016/j.pnpbp.2008.05.008.
  • Chagas, P. M.; Rosa, S. G.; Sari, M. H. M.; Oliveira, C. E. S.; Canto, R. F. S.; da Luz, S. C. A.; Braga, A. L.; Nogueira, C. W. Evaluation of the Pharmacological Properties of Salicylic Acid-Derivative Organoselenium: 2-Hydroxy-5-Selenocyanatobenzoic Acid as an Anti-Inflammatory and Antinociceptive Compound. Pharmacol. Biochem. Behav. 2014, 118, 87–95. 10.1016/j.pbb.2013.12.022.
  • Petronilho, F.; Michels, M.; Danielski, L. G.; Goldim, M. P.; Florentino, D.; Vieira, A.; Mendonça, M. G.; Tournier, M.; Piacentini, B.; Giustina, A. D.; et al. Diphenyl Diselenide Attenuates Oxidative Stress and Inflammatory Parameters in Ulcerative Colitis: A Comparison with Ebselen. Pathol. Res. Pract. 2016, 212, 755–760. DOI: 10.1016/j.prp.2016.04.012.
  • Wójtowicz, H.; Chojnacka, M.; Młochowski, J.; Palus, J.; Syper, L.; Hudecova, D.; Uher, M.; Piasecki, E.; Rybka, M. Functionalized Alkyl and Aryl Diselenides as Antimicrobial and Antiviral Agents: Synthesis and Properties. Farmaco. 2003, 58, 1235–1242. DOI: 10.1016/j.farmac.2003.08.003.
  • Wójtowicz, H.; Kloc, K.; Maliszewska, I.; Młochowski, J.; Pietka, M.; Piasecki, E. Azaanalogues of Ebselen as Antimicrobial and Antiviral Agents: Synthesis and Properties. Farmaco. 2004, 59, 863–868. DOI: 10.1016/j.farmac.2004.07.003.
  • May, S. W.; Pollock, S. H. Selenium-Based Antihypertensives. Drugs. 1998, 56, 959–964. DOI: 10.2165/00003495-199856060-00001.
  • Talas, Z. S.; Ozdemir, I.; Gok, Y.; Ates, B.; Yilmaz, I. Role of Selenium Compounds on Tyrosine Hydroxylase Activity, Adrenomedullin and Total RNA Levels in Hearts of Rats. RegulPept. 2010, 159, 137–141. DOI: 10.1016/j.regpep.2009.08.009.
  • Wirth, T.; Fragale, G. Asymmetric Addition Reactions with Optimized Selenium Electrophiles. Chem. Eur. J. 1997, 3, 1894–1902. DOI: 10.1002/chem.19970031123.
  • Fragale, G.; Wirth, T. Chiral Diselenides in Asymmetric Cyclization Reactions. Eur. J. Org. Chem. 1998, 1998, 1361–1369. DOI: 10.1002/(SICI)1099-0690(199807)1998:7 < 1361::AID-EJOC1361 > 3.0.CO;2-M.
  • Spichty, M.; Fragale, G.; Wirth, T. Theoretical Investigations on the Stereoselective Selenenylation Reaction of Alkenes. J. Am. Chem. Soc. 2000, 122, 10914–10916. DOI: 10.1021/ja001602l.
  • Thomas, S. P.; Satheeshkumar, K.; Mugesh, G.; Guru Row, T. N. Unusually Short Chalcogen Bonds Involving Organoselenium: Insights into the Se–N Bond Cleavage Mechanism of the Antioxidant Ebselen and Analogues. Chemistry. 2015, 21, 6793–6800. 10.1002/chem.201405998.
  • Goldstein, B. M.; Kennedy, S. D.; Hennen, W. J. Selenium-77 NMR and Crystallographic Studies of Selenazofurin and Its 5-Amino Derivative. J. Am. Chem. Soc. 1990, 112, 8265–8268. DOI: 10.1021/ja00179a007.
  • Burling, F. T.; Goldstein, B. M. Computational Studies of Nonbonded Sulfur-Oxygen and Selenium-Oxygen Interactions in the Thiazole and Selenazole Nucleosides. J. Am. Chem. Soc. 1992, 114, 2313–2320. DOI: 10.1021/ja00033a004.
  • Panda, A.; Menon, S. C.; Singh, H.; Butcher, B. R. J. Synthesis of Some Macrocycles/Bicycles from Bis(o-Formylphenyl) Selenide: X-Ray Crystal Structure of Bis(o-Formylphenyl) Selenide and the First 28-Membered Selenium Containing Macrocyclic Ligand. J. Organomet. Chem. 2001, 623, 87–94. DOI: 10.1016/S0022-328X(00)00830-5.
  • Tripathi, S. K.; Patel, U.; Roy, D.; Sunoj, R. B.; Singh, H. B.; Wolmershäuser, G.; Butcher, R. J. o-Hydroxylmethylphenylchalcogens: Synthesis, Intramolecular Nonbonded Chalcogen···OH Interactions, and Glutathione Peroxidase-like Activity. J. Org. Chem. 2005, 70, 9237–9247. 10.1021/jo051309+.
  • Hassan, W.; Pinton, S.; Rocha, J. T. d.; Deobald, A. M.; Braga, A. L.; Nogueira, C. W.; Latini, A. S.; Rocha, J. B. Hydroxyl Containing Seleno-Imine Compound Exhibits Improved Anti-Oxidant Potential and Does Not Inhibit Thiol-Containing Enzymes. Chem. Biol. Interact. 2011, 190, 35–44. DOI: 10.1016/j.cbi.2011.01.012.
  • Singh, V. P.; Poon, J.-F.; Butcher, R. J.; Engman, L. Pyridoxine-Derived Organoselenium Compounds with Glutathione Peroxidase-Like and Chain-Breaking Antioxidant Activity. Chemistry. 2014, 20, 12563–12571. 10.1002/chem.201403229.
  • Hori, T.; Sharpless, K. B. Synthetic Applications of Arylselenenic and Arylseleninic Acids. Conversion of Olefins to Allylic Alcohols and Epoxides. J. Org. Chem. 1978, 43, 1689–1697. DOI: 10.1021/jo00403a015.
  • Wiriyachitra, P.; Falcone, S. J.; Cava, M. P. Organotellurium Chemistry. 3. (o-Nitrophenyl)Tellurenyl Bromide: A Highly Stabilized Tellurenyl Halide. J. Org. Chem. 1979, 44, 3957–3959. DOI: 10.1021/jo01336a043.
  • Stuhr-Hansen, N.; Götze, T. F.; Henriksen, L.; Sølling, T. I.; Langkilde, A.; Sørensen, H. O. Sparing the Ortho-Position in Nucleophilic Aromatic Substitution-Specific Displacement of the 4-SePh Group in 2,4-Bis(Phenylseleno)Nitrobenzene. Heteroatom. Chem. 2009, 20, 101–108. DOI: 10.1002/hc.20519.
  • Bhabak, K. P.; Mugesh, G. Amide-Based Glutathione Peroxidase Mimics: Effect of Secondary and Tertiary Amide Substituents on Antioxidant Activity. Chem. Asian J. 2009, 4, 974–983. 10.1002/asia.200800483.
  • Bayse, C. A.; Pavlou, A. Tuning the Activity of Glutathione Peroxidase Mimics through Intramolecular Se⋯N,O Interactions: A DFT Study Incorporating Solvent-Assisted Proton Exchange (SAPE). Org. Biomol. Chem. 2011, 9, 8006–8015. DOI: 10.1039/c1ob05827d.
  • Nascimento, V.; Ferreira, N. L.; Canto, R. F. S.; Schott, K. L.; Waczuk, E. P.; Sancineto, L.; Santi, C.; Rocha, J. B. T.; Braga, A. L. Synthesis and Biological Evaluation of New Nitrogen-Containing Diselenides. Eur. J. Med. Chem. 2014, 87, 131–139. DOI: 10.1016/j.ejmech.2014.09.022.
  • Iwaoka, M.; Tomoda, S. First Observation of a C-H···Se "Hydrogen Bond". J. Am. Chem. Soc. 1994, 116, 4463–4464. DOI: 10.1021/ja00089a040.
  • Iwaoka, M.; Komatsu, H.; Tomoda, S. Deuterium-Induced Isotope Effects of a C–H···Se “Hydrogen Bond” on the IR and NMR Spectra of 6H,12H-Dibenzo[b,f][1,5]Diselenocin. BCSJ. 1996, 69, 1825–1828. . DOI: 10.1246/bcsj.69.1825.
  • Michalczyk, R.; Schmidt, J.; Moody, E.; Li, Z.; Wu, R.; Dunlap, R.; Odom, J.; Silks III, L. Unusual C − H⋅⋅⋅Se = C Interactions in Aldols of Chiral N-Acyl Selones Detected by Gradient-Selected 1H–77Se HMQC NMR Spectroscopy and X-Ray Crystallography. Angew. Chem. Int. Ed. 2000, 39, 3067–3070. DOI: 10.1002/1521-3773(20000901)39:17 < 3067::AID-ANIE3067 > 3.0.CO;2-D.
  • Zade, S. S.; Panda, S.; Singh, H. B.; Sunoj, R. B.; Butcher, R. J. Intramolecular Interactions between Chalcogen Atoms: Organoseleniums Derived from 1-Bromo-4-Tert-Butyl-2,6-di(Formyl)Benzene. J. Org. Chem. 2005, 70, 3693–3704. DOI: 10.1021/jo0478656.
  • Iwaoka, M.; Tomoda, S. Nature of the Intramolecular Se···N Nonbonded Interaction of 2-Selenobenzylamine Derivatives. An Experimental Evaluation by 1H, 77Se, and 15N NMR Spectroscopy. J. Am. Chem. Soc. 1996, 118, 8077–8084. DOI: 10.1021/ja953358h.
  • Mugesh, G.; Panda, A.; Singh, H. B.; Butcher, R. J. Intramolecular Se⋅⋅⋅N Nonbonding Interactions in Low-Valent Organoselenium Derivatives: A Detailed Study by 1H and 77Se NMR Spectroscopy and X-Ray Crystallography. Chem. Eur. J. 1999, 5, 1411–1421. DOI: 10.1002/(SICI)1521-3765(19990503)5:5 < 1411::AID-CHEM1411 > 3.0.CO;2-M.
  • Iwaoka, M.; Komatsu, H.; Katsuda, T.; Tomoda, S. Nature of Nonbonded Se···O Interactions Characterized by 17O NMR Spectroscopy and NBO and AIM Analyses. J. Am. Chem. Soc. 2004, 126, 5309–5317. DOI: 10.1021/ja049690n.
  • Sarma, B. K.; Mugesh, G. Theoretical Investigation on the Effect of Different Nitrogen Donors on Intramolecular Se⋅⋅⋅N Interactions. ChemPhysChem. 2009, 10, 3013–3020. DOI: 10.1002/cphc.200900332.
  • Arman, H. D.; Rafferty, E. R.; Bayse, C. A.; Pennington, W. T. Complementary Selenium···Iodine Halogen Bonding and Phenyl Embraces: Cocrystals of Triphenylphosphine Selenide with Organoiodides. Cryst. Growth Des. 2012, 12, 4315–4323. DOI: 10.1021/cg201348u.
  • Mukherjee, A. J.; Zade, S. S.; Singh, H. B.; Sunoj, R. B. Organoselenium Chemistry: Role of Intramolecular Interactions. Chem. Rev. 2010, 110, 4357–4416. DOI: 10.1021/cr900352j.
  • Vogt, A. G.; Voss, G. T.; de Oliveira, R. L.; Paltian, J. J.; Duarte, L. F.; Alves, D.; Jesse, C. R.; Roman, S. S.; Roehrs, J. A.; Wilhelm, E. A.; Luchese, C. Organoselenium Group is Critical for Antioxidant Activity of 7-Chloro-4-Phenylselenyl-Quinoline. Chem. Biol. Interact. 2018, 282, 7–12. DOI: 10.1016/j.cbi.2018.01.003.
  • Popa, R. A.; Licarete, E.; Banciu, M.; Silvestru, A. Organoselenium Compounds Containing Pyrazole or Phenylthiazole Groups: Synthesis, Structure, Tin (IV) Complexes and Antiproliferative Activity. Appl. Organomet. Chem. 2018, 32, 4252. DOI: 10.1002/aoc.4252.
  • Kim, B.; Sohn, T. I.; Kim, D.; Paton, R. S. Asymmetric Total Syntheses and Structure Confirmation of Chlorofucins and Bromofucins. Chemistry. 2018, 24, 2634–2642. DOI: 10.1002/chem.201704564.
  • Dyson, B. S.; Burton, J. W.; Sohn, T. I.; Kim, B.; Bae, H.; Kim, D. Total Synthesis and Structure Confirmation of Elatenyne: Success of Computational Methods for NMR Prediction with Highly Flexible Diastereomers. J. Am. Chem. Soc. 2012, 134, 11781–11790. DOI: 10.1021/ja304554e.
  • Kim, B.; Lee, M.; Kim, M. J.; Lee, H.; Kim, S.; Kim, D.; Koh, M.; Park, S. B.; Shin, K. J. Biomimetic Asymmetric Total Synthesis of (−)-Laurefucin via an Organoselenium-Mediated Intramolecular Hydroxyetherification. J. Am. Chem. Soc. 2008, 130, 16807–16811. DOI: 10.1021/ja806304s.
  • Lee, H.; Kim, K. W.; Park, J.; Kim, H.; Kim, S.; Kim, D.; Hu, X.; Yang, W.; Hong, J. A General Strategy for Construction of Both 2,6‐Cis‐and 2,6‐Trans‐Disubstituted Tetrahydropyrans: Substrate‐Controlled Asymmetric Total Synthesis of (+)‐Scanlonenyne. Angew. Chem. 2008, 120, 4268–4271. DOI: 10.1002/ange.200705663.
  • Jing, X.; Chen, C.; Deng, X.; Zhang, X.; Wei, D.; Yu, L. Design and Preparation of Poly‐Selenides: Easily Fabricated and Efficient Organoselenium Materials for Heavy Metal Removing and Recycling. Appl. Organometal. Chem. 2018, 32, e4332. DOI: 10.1002/aoc.4332.
  • Chrostowska, A.; Darrigan, C.; Dargelos, A.; Graciaa, A.; Guillemin, J. C. Isoselenocyanates versus Isothiocyanates and Isocyanates. J. Phys. Chem. A. 2018, 122, 2894–2905. DOI: 10.1021/acs.jpca.7b12604.
  • Perin, G.; Duarte, L. F. B.; Neto, J. S.; Silva, M. S.; Alves, D. Alternative Metal-Free Synthesis of Diorganoyl Selenides and Tellurides Mediated by Oxone. Synlett. 2018, 29, 1479–1484. DOI: 10.1055/s-0036-1591992.
  • Orlov, A. A.; Eletskaya, A. A.; Frolov, K. A.; Golinets, A. D.; Palyulin, V. A.; Krivokolysk, S. G.; Kozlovskaya, L. I.; Dotsenko, V. V.; Osolodkin, D. I. Probing Chemical Space of Tick-Borne Encephalitis Virus Reproduction Inhibitors with Organoselenium Compounds. Arch. Pharm. Chem. Life Sci. 2018, 351, e1700353. DOI: 10.1002/ardp.201700353.
  • Kirsi, J. J.; North, J. A.; McKernan, P. A.; Murray, B. K.; Canonico, P. G.; Huggins, J. W.; Srivastava, P. C.; Robins, R. K. Broad-Spectrum Antiviral Activity of 2-Beta-D-Ribofuranosylselenazole-4-Carboxamide, a New Antiviral Agent. Antimicrob. Agents Chemother. 1983, 24, 353–361. DOI: 10.1128/AAC.24.3.353.
  • Kirsi, J. J.; McKernan, P. A.; Burns, N. J.; North, J. A.; Murray, B. K.; Robins, R. K. Broad-Spectrum Synergistic Antiviral Activity of Selenazofurin and Ribavirin. Antimicrob. Agents Chemother. 1984, 26, 466–475. DOI: 10.1128/AAC.26.4.466.
  • Huggins, J. W.; Robins, R. K.; Canonico, P. G. Synergistic Antiviral Effects of Ribavirin and the C-Nucleoside Analogs Tiazofurin and Selenazofurin against Togaviruses, Bunyaviruses, and Arenaviruses. Antimicrob. Agents Chemother. 1984, 26, 476–480. DOI: 10.1128/AAC.26.4.476.
  • Sidwell, R. W.; Huffman, J. H.; Call, E. W.; Alaghamandan, H.; Cook, P. D.; Robins, R. K. Activity of Selenazofurin against Influenza A and B Viruses In Vitro. Antimicrob. Agents Chemother. 1985, 28, 375–377. DOI: 10.1128/AAC.28.3.375.
  • Wray, S. K.; Smith, R. H.; Gilbert, B. E.; Knight, V. Effects of Selenazofurin and Ribavirin and Their 5'-Triphosphates on Replicative Functions of Influenza A and B Viruses. Antimicrob. Agents Chemother. 1986, 29, 67–72. DOI: 10.1128/AAC.29.1.67.
  • Bonnet, P. A.; Robins, R. K. Modulation of Leukocyte Genetic Expression by Novel Purine Nucleoside Analogs. A New Approach to Antitumor and Antiviral Agents. J. Med. Chem. 1993, 36, 635–653. DOI: 10.1021/jm00058a001.
  • Du, J.; Surzhykov, S.; Lin, J. S.; Newton, M. G.; Cheng, Y. C.; Schinazi, R. F.; Chu, C. K. Synthesis, anti-Human Immunodeficiency Virus and Anti-Hepatitis B Virus Activities of Novel Oxaselenolane Nucleosides. J. Med. Chem. 1997, 40, 2991–2993. DOI: 10.1021/jm9703698.
  • Chu, C. K.; Ma, L.; Olgen, S.; Pierra, C.; Du, J.; Gumina, G.; Gullen, E.; Cheng, Y. C.; Schinazi, R. F. Synthesis and Antiviral Activity of Oxaselenolane Nucleosides. J. Med. Chem. 2000, 43, 3906–3912. DOI: 10.1021/jm990113x.
  • Tosh, D. K.; Choi, W. J.; Kim, H. O.; Lee, Y.; Pal, S.; Hou, X.; Choi, J.; Choi, S.; Jeong, L. S. Stereoselective Synthesis and Conformational Study of Novel 2′,3′-Didehydro-2′,3′-Dideoxy-4′-Selenonucleosides. J. Org. Chem. 2008, 73, 4259–4262. DOI: 10.1021/jo8003277.
  • Goudgaon, N. M.; Schinazi, R. F. Activity of Acyclic 6-(Phenylselenenyl) Pyrimidine Nucleosides against Human Immunodeficiency Viruses in Primary Lymphocytes. J. Med. Chem. 1991, 34, 3305–3309. DOI: 10.1021/jm00115a022.
  • Zhan, P.; Liu, X.; Fang, Z.; Pannecouque, C.; De Clercq, E. 1,2,3-Selenadiazole Thioacetanilides: Synthesis and Anti-HIV Activity Evaluation. Bioorg. Med. Chem. 2009, 17, 6374–6379. DOI: 10.1016/j.bmc.2009.07.027.
  • Pietka-Ottlik, M.; Potaczek, P.; Piasecki, E.; Mlochowski, J. Crucial Role of Selenium in the Virucidal Activity of Benzisoselenazol-3(2H)-Ones and Related Diselenides. Molecules. 2010, 15, 8214–8228. DOI: 10.3390/molecules15118214.
  • Pietka-Ottlik, M.; Wójtowicz-Młochowska, H.; Kołodziejczyk, K.; Piasecki, E.; Młochowski, J. New Organoselenium Compounds Active against Pathogenic Bacteria, Fungi and Viruses. Chem. Pharm. Bull. (Tokyo). 2008, 56, 1423–1427. DOI: 10.1248/cpb.56.1423.
  • Wang, Y.; Suzek, T.; Zhang, J.; Wang, J.; He, S.; Cheng, T.; Shoemaker, B. A.; Gindulyte, A.; Bryant, S. H. PubChem Bioassay: 2014 Update. Nucleic Acids Res. 2014, 42, D1075–D1082. DOI: 10.1093/nar/gkt978.
  • Barbosa, F. A. R.; Canto, R. F. S.; Saba, S.; Rafique, J.; Braga, A. L. Synthesis and Evaluation of Dihydropyrimidinone-Derived Selenoesters as Multi-Targeted Directed Compounds against Alzheimer’s Disease. Bioorg. Med. Chem. 2016, 24, 5762–5770. DOI: 10.1016/j.bmc.2016.09.031.
  • Canto, R. F. S.; Barbosa, F. A. R.; Nascimento, V.; de Oliveira, A. S.; Brighente, I. M. C.; Braga, A. L. Design, Synthesis and Evaluation of Selenodihydropyrimidinones as Potential Multi-Targeted Therapeutics for Alzheimer’s Disease. Org. Biomol. Chem. 2014, 12, 3470–3477. DOI: 10.1039/c4ob00598h.
  • Nepali, K.; Sharma, S.; Sharma, M.; Bedi, P. M. S.; Dhar, K. L. Rational Approaches, Design Strategies, Structure Activity Relationship and Mechanistic Insights for Anticancer Hybrids. Eur. J. Med. Chem. 2014, 77, 422–487. DOI: 10.1016/j.ejmech.2014.03.018.
  • Klayman, D. L.; Shine, R. J. A New Synthesis of Selenoureas and Selenothiocarbamic Esters from Thioureas. J. Org. Chem. 1969, 34, 3549–3551. DOI: 10.1021/jo01263a070.
  • Barbosa, F. A. R.; Siminski, T.; Canto, R. F. S.; Almeida, G. M.; Mota, N. S. R. S.; Ourique, F.; Pedrosa, R. C.; Braga, A. L. Novel Pyrimidinic Selenourea Induces DNA Damage, Cell Cycle Arrest, and Apoptosis in Human Breast Carcinoma. Eur. J. Med. Chem. 2018, 155, 503–515. DOI: 10.1016/j.ejmech.2018.06.026.
  • Kaan, H. Y. K.; Ulaganathan, V.; Rath, O.; Prokopcová, H.; Dallinger, D.; Kappe, C. O.; Kozielski, F. Structural Basis for Inhibition of Eg5 by Dihydropyrimidines: Stereoselectivity of Antimitotic Inhibitors Enastron, Dimethylenastron and Fluorastrol. J. Med. Chem. 2010, 53, 5676–5683. DOI: 10.1021/jm100421n.
  • Mohammadi, B.; Behbahani, F. K.; Marandi, G. B.; Mirza, B. One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones, Thiones and 2-Selenoxo DHPMs Using 1-Butyl-3-Methylimidazolium Hydrogen Sulfate as Non-Halogenated Ionic Liquid. Phosphorus Sulfur Silicon Relat. Elem. 2021, 196, 54–60. DOI: 10.1080/10426507.2020.1800702.
  • Braga, A. L.; Schneider, P. H.; Paixao, M. W.; Deobald, A. M.; Peppe, C.; Bottega, D. P. Chiral Seleno-Amines from Indium Selenolates. A Straightforward Synthesis of Selenocysteine Derivatives. J. Org. Chem. 2006, 71, 4305–4307. DOI: 10.1021/jo060286b.
  • Vargas, F.; Comasseto, J. V. Practical Synthesis of Chiral β-Telluro Amines by Ring-Opening Reaction of Aziridines. J. Organomet. Chem. 2009, 694, 122–126. DOI: 10.1016/j.jorganchem.2008.09.025.
  • Revanna, R. H.; Kumar, R. P.; Hosamani, A.; Siddagangaiah, P. B. Efficient and Practical Synthesis of Modular Chiral β-Organochalcogeno Amines, ArYCH2CH (R) NH2, and Single Crystal Structures of (S)-MsOCH2CH(Bz)NH3+. ·Cl− and (R)-MsOCH2CH (Ph) NH3+·Cl−. J. Organomet. Chem. 2015, 799–800, 61–69. DOI: 10.1016/j.jorganchem.2015.08.025.
  • Kawasoko, C. Y.; Foletto, P.; Rodrigues, O. E.; Dornelles, L.; Schwab, R. S.; Braga, A. L. Straightforward Synthesis of Non-Natural l-Chalcogen and l-Diselenide N-Boc-Protected-γ-Amino Acid Derivatives. Org. Biomol. Chem. 2013, 11, 5173–5183. DOI: 10.1039/c3ob40879e.
  • Milton, M. D.; Khan, S.; Singh, J. D.; Mishra, V.; Khandelwal, B. L. A Facile Access to Chalcogen and Dichalcogen Bearing Dialkylamines and Diols. Tetrahedron Lett. 2005, 46, 755–758. DOI: 10.1016/j.tetlet.2004.12.035.
  • Amosova, S. V.; Makhaeva, N. A.; Martynov, A. V.; Potapov, V. A.; Steele, B. R.; Kostas, I. D. Terminal Organylchalcogenoethyl-and-Propylamines and Their Schiff Base Derivatives. Synthesis. 2005, 10, 1641–1648. DOI: 10.1055/s-2005-865310.
  • Dalmolin, M. C.; Bandeira, P. T.; Ferri, M. S.; de Oliveira, A. R. M.; Piovan, L. Straightforward Microwave-Assisted Synthesis of Organochalcogen Amines by Reductive Amination. J. Organomet. Chem. 2018, 874, 32–39. DOI: 10.1016/j.jorganchem.2018.08.007.
  • Cui, J.; Pang, L.; Wei, M.; Gan, C.; Liu, D.; Yuan, H.; Huang, Y. Synthesis and Antiproliferative Activity of 17-[1′, 2′, 3′]-Selenadiazolylpregnenolone Compounds. Steroids. 2018, 140, 151–158. DOI: 10.1016/j.steroids.2018.10.004.
  • Venkateshwaran, K.; Deka, R.; Raju, S.; Singh, H. B.; Butcher, R. J. Hypervalent Organoselenium Compounds Stabilized by Intramolecular Coordination: Synthesis and Crystal Structures. Acta Crystallogr. C Struct. Chem. 2019, 75, 70–76. DOI: 10.1107/S2053229618014833.
  • Sauer, A. C.; Leal, J. G.; Stefanello, S. T.; Leite, M. T.; Souza, M. B.; Soares, F. A.; Rodrigues, O. E.; Dornelles, L. Synthesis and Antioxidant Properties of Organosulfur and Organoselenium Compounds Derived from 5-Substituted-1,3,4-Oxadiazole/Thiadiazole-2-Thiols. Tetrahedron Lett. 2017, 58, 87–91. DOI: 10.1016/j.tetlet.2016.11.106.
  • Rangraz, Y.; Nemati, F.; Elhampour, A. Organoselenium–Palladium(II) Complex Immobilized on Functionalized Magnetic Nanoparticles as a Promising Retrievable Nanocatalyst for the “Phosphine-Free” Heck–Mizoroki Coupling Reaction. New J. Chem. 2018, 42, 15361–15371. DOI: 10.1039/C8NJ02433B.
  • Elsabawy, K. M.; Abdel-Hafez, S. H. Molecular Structural Visualization and Micro-Structural Features of 4, 6-Dimethyl-3-Cyanopyridine-(2H)-Selenone. Mater. Chem. Phys. 2012, 132, 631–636. DOI: 10.1016/j.matchemphys.2011.11.079.
  • Abdel‐Hafez, S. H.; Hussein, M. A. Selenium‐Containing Heterocycles: Synthesis and Pharmacological Activities of Some New 4‐Methylquinoline‐2(1H) Selenone Derivatives. Arch. Pharm. (Weinheim). 2008, 341, 240–246. DOI: 10.1002/ardp.200700202.
  • Singh, D.; Alberto, E. E.; Rodrigues, O. E. D.; Braga, A. L. Eco-Friendly Cross-Coupling of Diaryl Diselenides with Aryl and Alkyl Bromides Catalyzed by CuO Nanopowder in Ionic Liquid. Green Chem. 2009, 11, 1521–1524. DOI: 10.1039/b916266f.
  • Singh, D.; Narayanaperumal, S.; Gul, K.; Godoi, M.; Rodrigues, O. E. D.; Braga, A. L. Efficient Synthesis of Selenoesters from Acyl Chlorides Mediated by CuO Nanopowder in Ionic Liquid. Green Chem. 2010, 12, 957–960. DOI: 10.1039/c002648d.
  • Salman, S. M.; Narayanaperumal, S.; Schwab, R. S.; Bender, C. R.; Rodrigues, O. E.; Dornelles, L. CuO Nano Particles and [Bmim] BF4: An Application towards the Synthesis of Chiral β-Seleno Amino Derivatives via Ring Opening Reaction of Aziridines with Diorganyl Diselenides. RSC Adv. 2012, 2, 8478–8482. DOI: 10.1039/c2ra21488a.
  • Yang, M. H.; Yan, G. B.; Zheng, Y. F. Regioselective Ring-Opening Reactions of 1,2-Epoxides with Thiols and Arylselenols Directly Promoted by [Bmim] BF4. Tetrahedron Lett. 2008, 49, 6471–6474. DOI: 10.1016/j.tetlet.2008.08.109.
  • Potewar, T. M.; Ingale, S. A.; Srinivasan, K. V. An Efficient and Eco-Friendly Synthesis of 2-Amino-1, 3-Selenazoles in an Ionic Liquid/Water System under Ambient Conditions. Arkivoc. 2008, 2008, 117–125. DOI: 10.3998/ark.5550190.0009.c14.
  • Alberto, E. E.; Rossato, L. L.; Alves, S. H.; Alves, D.; Braga, A. L. Imidazolium Ionic Liquids Containing Selenium: Synthesis and Antimicrobial Activity. Org. Biomol. Chem. 2011, 9, 1001–1003. DOI: 10.1039/c0ob01010c.
  • Prabhu, C. P.; Phadnis, P. P.; Wadawale, A. P.; Priyadarsini, K. I.; Jain, V. K. Synthesis, Characterization, Structures and Antioxidant Activity of Nicotinoyl Based Organoselenium Compounds. J. Organomet. Chem. 2012, 713, 42–50. DOI: 10.1016/j.jorganchem.2012.04.014.
  • Reich, H. J.; Hondal, R. J. Why Nature Chose Selenium. ACS Chem. Biol. 2016, 11, 821–841. DOI: 10.1021/acschembio.6b00031.
  • Bartolini, D.; Sancineto, L.; de Bem, A. F.; Tew, K. D.; Santi, C.; Radi, R.; Toquato, P.; Galli, F. Selenocompounds in Cancer Therapy: An Overview. Adv. Cancer Res. 2017, 136, 259–302. 10.1016/bs.acr.2017.07.007.
  • Nogueira, C. W.; Barbosa, N. V.; Rocha, J. B. Toxicology and Pharmacology of Synthetic Organoselenium Compounds: An Update. Arch. Toxicol. 2021, 95, 1179–1226. DOI: 10.1007/s00204-021-03003-5.
  • Wang, M.; Fan, Q.; Jiang, X. Transition-Metal-Free Diarylannulated Sulfide and Selenide Construction via Radical/Anion-Mediated Sulfur–Iodine and Selenium–Iodine Exchange. Org. Lett. 2016, 18, 5756–5759. DOI: 10.1021/acs.orglett.6b03078.
  • Singh, B. G.; Kunwar, A. Redox Reactions of Organoselenium Compounds: Implication in Their Biological Activity. Free Radic. Biol. Med. 2021, 55, 873–886. DOI: 10.1080/10715762.2021.1882678.
  • de Oliveira Pereira, F. S.; Barbosa, F. A. R.; Canto, R. F. S.; Lucchese, C.; Pinton, S.; Braga, A. L.; de Azeredo, J. B.; Quines, C. B.; Ávila, D. S. Dihydropyrimidinone-Derived Selenoesters Efficacy and Safety in an In Vivo Model of Aβ Aggregation. NeuroToxicol. 2022, 88, 14–24. DOI: 10.1016/j.neuro.2021.10.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.