251
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Crystal structure, antibacterial and antifungal evaluation of 5-bromothiophene based 3,4-dihydropyrimidin-2-(1H)-(thi)ones

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 145-153 | Received 05 Jul 2022, Accepted 01 Sep 2022, Published online: 14 Sep 2022

References

  • Vala, R. M.; Sharma, M. G.; Patel, D. M.; Puerta, A.; Padrón, J. M.; Ramkumar, V.; Gardas, R. L.; Patel, H. M. Synthesis and in Vitro Study of Antiproliferative Benzyloxy Dihydropyrimidinones. Arch. Pharm. 2021, 354, 2000466. DOI: 10.1002/ardp.202000466.
  • Kumarasamy, D.; Roy, B. G.; Rocha-Pereira, J.; Neyts, J.; Nanjappan, S.; Maity, S.; Mookerjee, M.; Naesens, L. Synthesis and in Vitro Antiviral Evaluation of 4-Substituted 3,4-Dihydropyrimidinones. Bioorg. Med. Chem. Lett. 2017, 27, 139–142. DOI: 10.1016/j.bmcl.2016.12.010.
  • Padmavathy, K.; Krishnan, K. G.; Kumar, C. U.; Sutha, P.; Sivaramakarthikeyan, R.; Ramalingan, C. Synthesis, Antioxidant Evaluation, Density Functional Theory Study of Dihydropyrimidine Festooned Phenothiazines. ChemistrySelect 2018, 3, 5965–5974. DOI: 10.1002/slct.201800748.
  • de Souza, V. P.; Santos, F. S.; Rodembusch, F. S.; Braga, C. B.; Ornelas, C.; Pilli, R. A.; Russowsky, D. Hybrid 3,4-Dihydropyrimidin-2-(Thi)Ones as Dual-Functional Bioactive Molecules: fluorescent Probes and Cytotoxic Agents to Cancer Cells. New J. Chem. 2020, 44, 12440–12451. DOI: 10.1039/D0NJ01368D.
  • Kim, J.; Ok, T.; Park, C.; So, W.; Jo, M.; Kim, Y.; Seo, M.; Lee, D.; Jo, S.; Ko, Y.; et al. A Novel 3,4-Dihydropyrimidin-2(1H)-One: HIV-1 Replication Inhibitors with Improved Metabolic Stability. Bioorg. Med. Chem. Lett. 2012, 22, 2522–2526. DOI: 10.1016/j.bmcl.2012.01.133.
  • Patel, N.; Pathan, S.; Soni, H. I. 3,4-Dihydropyrimidin-2(1H)-One Analogues: Microwave Irradiated Synthesis with Antimicrobial and Antituberculosis Study. CMIC. 2019, 6, 61–70. DOI: 10.2174/2213335606666190724093305.
  • González-Hernández, E.; Aparicio, R.; Garayoa, M.; Montero, M. J.; Sevilla, M. Á.; Pérez-Melero, C. Dihydropyrimidine-2-Thiones as Eg5 Inhibitors and L-Type Calcium Channel Blockers: potential Antitumour Dual Agents. Medchemcomm. 2019, 10, 1589–1598. DOI: 10.1039/C9MD00108E.
  • Kapoor, T. M.; Mayer, T. U.; Coughlin, M. L.; Mitchison, T. J. Probing Spindle Assembly Mechanisms with Monastrol, a Small Molecule Inhibitor of the Mitotic Kinesin, Eg5. J. Cell Biol. 2000, 150, 975–988. DOI: 10.1083/jcb.150.5.975.
  • Garcia-Saez, I.; DeBonis, S.; Lopez, R.; Trucco, F.; Rousseau, B.; Thuéry, P.; Kozielski, F. Structure of Human Eg5 in Complex with a New Monastrol-Based Inhibitor Bound in the R Configuration. J. Biol. Chem. 2007, 282, 9740–9747. DOI: 10.1074/jbc.M608883200.
  • Schnell, B.; Strauss, U. T.; Verdino, P.; Faber, K.; Kappe, C. Synthesis of Enantiomerically Pure 4-Aryl-3,4-Dihydropyrimidin-2(1H)-Ones via Enzymatic Resolution: preparation of the Antihypertensive Agent (R)-SQ 32926. Tetrahedron: Asymmetry 2000, 11, 1449–1453. DOI: 10.1016/S0957-4166(00)00081-1.
  • Chiang, A. N.; Liang, M.; Dominguez-Meijide, A.; Masaracchia, C.; Goeckeler-Fried, J. L.; Mazzone, C. S.; Newhouse, D. W.; Kendsersky, N. M.; Yates, M. E.; Manos-Turvey, A.; et al. Synthesis and Evaluation of Esterified Hsp70 Agonists in Cellular Models of Protein Aggregation and Folding. Bioorg. Med. Chem. 2019, 27, 79–91. DOI: 10.1016/j.bmc.2018.11.011.
  • Singh, K.; Puri, P.; Kumar, Y.; Sharma, C. Syntheses, Spectral, and Biological Studies of New Imines Derived from 5-Bromothiophene-2-Carboxaldehyde and Their Si(IV), Sn(IV) Complexes. Phosphorus Sulfur Silicon Relat. Elem. 2013, 188, 1462–1473. DOI: 10.1080/10426507.2012.757609.
  • López, R.; Villagra, D.; Ferraudi, G.; Moya, S. A.; Guerrero, J. Preparation and Photophysical Properties of Precursors of Inorganic Macromolecules. Mono and Binuclear Complexes of Ru(II) and Terpyridine Derivatized with Thiophene and 4′-(5-Bromothiophene) Groups. Inorg. Chim Acta 2004, 357, 3525–3531. DOI: 10.1016/j.ica.2004.02.038.
  • Trumbo, D. L.; Marvel, C. S. Polymerization Using Palladium (II) Salts II: Polymerization of 2-Ethynyl-5-Bromothiophene. J. Polym. Sci. A Polym. Chem. 1986, 24, 2231–2238. DOI: 10.1002/pola.1986.080240917.
  • Noreen, M.; Rasool, N.; Gull, Y.; Nasim, F-u-H.; Zahoor, A. F.; Yaqoob, A.; Kousar, S.; Zubair, M.; Bukhari, I. H.; Rana, U. A.; et al. A Facile Synthesis of New 5-Aryl-Thiophenes Bearing Sulfonamide Moiety via Pd(0)-Catalyzed Suzuki–Miyaura Cross Coupling Reactions and 5-Bromothiophene-2-Acetamide: As Potent Urease Inhibitor, Antibacterial Agent and Hemolytically Active Compounds. J. Saudi Chem. Soc. 2017, 21, S403–S414. DOI: 10.1016/j.jscs.2014.04.007.
  • Rasool, N.; Ikram, H. M.; Rashid, A.; Afzal, N.; Hashmi, M. A.; Khan, M. N.; Khan, A.; Imran, I.; Rahman, H. M. A.; Shah, S. A. A.; et al. Design, Synthesis, and Spasmolytic Activity of Thiophene-Based Derivatives via Suzuki Cross-Coupling Reaction of 5-Bromothiophene-2-Carboxylic Acid: their Structural and Computational Studies. Turk. J. Chem. 2020, 44, 1410–1422. DOI: 10.3906/kim-1911-51.
  • Sharma, M.; Rajani, D.; Patel, H. Green Approach for Synthesis of Bioactive Hantzsch 1, 4-Dihydropyridine Derivatives Based on Thiophene Moiety via Multicomponent Reaction. R Soc. Open Sci. 2017, 4, 170006. DOI: 10.1098/rsos.170006.
  • Patel, H. M.; Rajani, D. P.; Sharma, M. G.; Bhatt, H. G. Synthesis, Molecular Docking and Biological Evaluation of Mannich Products Based on Thiophene Nucleus Using Ionic Liquid. LDDD. 2018, 16, 119–126. DOI: 10.2174/1570180815666180502123743.
  • Patel, D. M.; Patel, H. M. Trimethylglycine-Betaine-Based-Catalyst-Promoted Novel and Ecocompatible Pseudo-Four-Component Reaction for Regioselective Synthesis of Functionalized 6,8-Dihydro-1′H,5H-Spiro[[1,3]Dioxolo[4,5-g]Quinoline-7,5′-Pyrimidine]-2′,4′,6′(3′H)-Trione Derivatives. ACS Sustainable Chem. Eng. 2019, 7, 18667–18676. DOI: 10.1021/acssuschemeng.9b05184.
  • Sharma, M. G.; Vala, R. M.; Patel, H. M. Pyridine-2-Carboxylic Acid as an Effectual Catalyst for Rapid Multi-Component Synthesis of Pyrazolo[3,4-b]Quinolinones. RSC Adv. 2020, 10, 35499–35504. DOI: 10.1039/D0RA06738E.
  • Patel, D. M.; Patel, H. J.; Padrón, J. M.; Patel, H. M. A Novel Substrate Directed Multicomponent Reaction for the Syntheses of Tetrahydro-Spiro[Pyrazolo[4,3-f]Quinoline]-8,5′-Pyrimidines and Tetrahydro-Pyrazolo[4,3-f]Pyrimido[4,5-b]Quinolines via Selective Multiple C–C Bond Formation under Metal-Free Conditions. RSC Adv. 2020, 10, 19600–19609. DOI: 10.1039/D0RA02990D.
  • Patel, H. M. Synthesis of New Mannich Products Bearing Quinoline Nucleous Using Reusable Ionic Liquid and Antitubercular Evaluation. GSC. 2015, 05, 137–144. DOI: 10.4236/gsc.2015.54017.
  • Patel, S. G.; Vala, R. M.; Patel, P. J.; Upadhyay, D. B.; Ramkumar, V.; Gardas, R. L.; Patel, H. M. Synthesis, Crystal Structure and in Silico Studies of Novel 2,4-Dimethoxy-Tetrahydropyrimido[4,5-b]Quinolin-6(7H)-Ones. RSC Adv. 2022, 12, 18806–18820. DOI: 10.1039/D2RA02694E.
  • Sharma, M. G.; Pandya, J.; Patel, D. M.; Vala, R. M.; Ramkumar, V.; Subramanian, R.; Gupta, V. K.; Gardas, R. L.; Dhanasekaran, A.; Patel, H. M.; et al. One-Pot Assembly for Synthesis of 1,4-Dihydropyridine Scaffold and Their Biological Applications. Polycyclic Aromat. Compd. 2021, 41, 1495–1505. DOI: 10.1080/10406638.2019.1686401.
  • Ranu, B. C.; Hajra, A.; Jana, U. Indium (III) Chloride-Catalyzed One-Pot Synthesis of Dihydropyrimidinones by a Three-Component Coupling of 1, 3-Dicarbonyl Compounds, Aldehydes, and Urea: An Improved Procedure for the Biginelli Reaction. J. Org. Chem. 2000, 65, 6270–6272. DOI: 10.1021/jo000711f.
  • Kappe, C. O.; Stadler, A. The Biginelli Dihydropyrimidine Synthesis. John Wiley & Sons, Inc.: Hoboken, NJ, United States, 2004.
  • Madivalappa Davanagere, P.; Maiti, B. 1,3-Bis(Carboxymethyl)Imidazolium Chloride as a Sustainable, Recyclable, and Metal-Free Ionic Catalyst for the Biginelli Multicomponent Reaction in Neat Condition. ACS Omega. 2021, 6, 26035–26047. DOI: 10.1021/acsomega.1c02976.
  • Taheri Hatkehlouei, S. F.; Mirza, B.; Soleimani-Amiri, S. Solvent-Free One-Pot Synthesis of Diverse Dihydropyrimidinones/Tetrahydropyrimidinones Using Biginelli Reaction Catalyzed by Fe3O4@C@OSO3H. Polycyclic Aromat. Compd 2022, 42, 1341–1357. DOI: 10.1080/10406638.2020.1781203.
  • Jadhav, C. K.; Nipate, A. S.; Chate, A. V.; Songire, V. D.; Patil, A. P.; Gill, C. H. Efficient Rapid Access to Biginelli for the Multicomponent Synthesis of 1,2,3,4-Tetrahydropyrimidines in Room-Temperature Diisopropyl Ethyl Ammonium Acetate. ACS Omega. 2019, 4, 22313–22324. DOI: 10.1021/acsomega.9b02286.
  • Nagarajaiah, H.; Mukhopadhyay, A.; Moorthy, J. N. Biginelli Reaction: An Overview. Tetrahedron Lett. 2016, 57, 5135–5149. DOI: 10.1016/j.tetlet.2016.09.047.
  • Handique, S.; Sharma, P. One Pot Three Components Solvent Free Synthesis of 4-Substituted Phenyl-2-(Sulfanyl/Oxo) Pyrimidine-5-Carboxylate Derivatives. Results Chem. 2022, 4, 100411. DOI: 10.1016/j.rechem.2022.100411.
  • Litvić, M.; Večenaj, I.; Ladišić, Z. M.; Lovrić, M.; Vinković, V.; Filipan-Litvić, M. First Application of Hexaaquaaluminium(III) Tetrafluoroborate as a Mild, Recyclable, Non-Hygroscopic Acid Catalyst in Organic Synthesis: A Simple and Efficient Protocol for the Multigram Scale Synthesis of 3,4-Dihydropyrimidinones by Biginelli Reaction. Tetrahedron 2010, 66, 3463–3471. DOI: 10.1016/j.tet.2010.03.024.
  • SAINT, v8.37A Bruker, SAINT. Bruker AXS, Inc.: Madison, WI, USA, 2013.
  • Sheldrick, G. M., Ed. SADABS, Program for Empirical Absorption Correction of Area Detector Data, 1996.
  • Sheldrick, G. SHELXT – Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. A Found. Adv. 2015, 71, 3–8. DOI: 10.1107/S2053273314026370.
  • Sheldrick, G. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. DOI: 10.1107/S2053229614024218.
  • Tan, S. L.; Jotani, M. M.; Tiekink, E. R. T. Utilizing Hirshfeld Surface Calculations, Non-Covalent Interaction (NCI) Plots and the Calculation of Interaction Energies in the Analysis of Molecular Packing. Acta Crystallogr. E Crystallogr. Commun. 2019, 75, 308–318. DOI: 10.1107/S2056989019001129.
  • Dhandapani, A.; Manivarman, S.; Subashchandrabose, S. Synthesis, Single Crystal Structure, Hirshfeld Surface and Theoretical Investigations on Pyrimidine Derivative. Chem. Phys. Lett. 2016, 655-656, 17–29. doi:10.1016/j.cplett.2016.04.009.
  • Mokariya, J. A.; Kalola, A. G.; Prasad, P.; Patel, M. P. Simultaneous Ultrasound- and Microwave-Assisted One-Pot ‘Click’ Synthesis of 3-Formyl-Indole Clubbed 1,2,3-Triazole Derivatives and Their Biological Evaluation. Mol. Divers. 2022, 26, 963–979. DOI: 10.1007/s11030-021-10212-8.
  • Daina, A.; Zoete, V. A. BOILED-Egg to Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem 2016, 11, 1117–1121. DOI: 10.1002/cmdc.201600182.
  • Chundawat, T. S.; Kumari, P.; Sharma, N.; Bhagat, S. Strategic Synthesis and in Vitro Antimicrobial Evaluation of Novel Difluoromethylated 1-(1, 3-Diphenyl-1H-Pyrazol-4-yl)-3, 3-Difluoro-1, 3-Dihydro-Indol-2-Ones. Med. Chem. Res. 2016, 25, 2335–2348. DOI: 10.1007/s00044-016-1658-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.