176
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis and structures of EOM-protected 2,6-bis(diphenylphosphino)-4-methylphenol and its deprotected P-chalcogenides, 2,6-bis(Ph2P = E)-4-methylphenols (E = O, S, Se)

ORCID Icon, , , &
Pages 215-222 | Received 25 Jul 2022, Accepted 05 Oct 2022, Published online: 14 Oct 2022

References

  • Zabicky, J. The Chemistry of Metal Phenolates. John Wiley & Sons: Chichester, 2014.
  • Heinicke, J.; Peulecke, N.; Köhler, M.; He, M.; Keim, W. Tuning of Nickel 2-Phosphinophenolates - Catalysts for Oligomerization and Polymerization of Ethylene. J. Organomet. Chem. 2005, 690, 2449–2457. DOI: 10.1016/j.jorganchem.2004.10.012.
  • Mu, H.; Zhou, G.; Hu, X.; Jian, Z. Recent Advances in Nickel Mediated Copolymerization of Olefin with Polar Monomers. Coord. Chem. Rev. 2021, 435, 213802. DOI: 10.1016/j.ccr.2021.213802.
  • Zhang, Y.; Mu, H.; Li, Y.; Li, Y. Phosphine (Oxide)-(Thio) Phenolate Palladium Complexes: Synthesis, Characterization and (co)Polymerization of Norbornene. Appl. Organomet. Chem. 2018, 32, e4013. DOI: 10.1002/aoc.4013.
  • Cui, M.; Sung, H. H. Y.; Williams, I. D.; Jia, G. Alkyne Metathesis with d2 Re(V) Alkylidyne Complexes Supported by Phosphino-Phenolates: Ligand Effect on Catalytic Activity and Applications in Ring-Closing Alkyne Metathesis. J. Am. Chem. Soc. 2022, 144, 6349–6360. DOI: 10.1021/jacs.2c00368.
  • Zhang, Y.; Mu, H.; Pan, L.; Wang, X.; Li, Y. Robust Bulky [P,O] Neutral Nickel Catalysts for Copolymerization of Ethylene with Polar Vinyl Monomers. ACS Catal. 2018, 8, 5963–5976. DOI: 10.1021/acscatal.8b01088.
  • Lin, F.; Morgen, T. O.; Mecking, S. Living Aqueous Microemulsion Polymerization of Ethylene with Robust Ni(II) Phosphinophenolato Catalysts. J. Am. Chem. Soc. 2021, 143, 20605–20608. DOI: 10.1021/jacs.1c10488.
  • Fliedel, C.; Rosa, V.; Alves, F. M.; Martins, A. M.; Avilés, T.; Dagorne,.; S.; P. O-Phosphinophenolate Zinc(II) Species: synthesis, Structure and Use in the Ring-Opening Polymerization (ROP) of Lactide, ε-Caprolactone and Trimethylene Carbonate. Dalton Trans. 2015, 44, 12376–12387. DOI: 10.1039/C5DT00458F.
  • Tahmouresilerd, B.; Xiao, D.; Do, L. H. Rigidifying Cation-Tunable Nickel Catalysts Increases Activity and Polar Monomer Incorporation in Ethylene and Methyl Acrylate Copolymerization. Inorg. Chem. 2021, 60, 19035–19043. DOI: 10.1021/acs.inorgchem.1c02888.
  • Shuvaev, S.; Kotova, O.; Utochnikova, V.; Vaschenko, A.; Puntus, L.; Baulin, V.; Kuzmina, N.; Tzivadze, A. Novel Terbium Luminescent Complexes with o-Phosphorylated Phenolate Ligands. Inorg. Chem. Commun. 2012, 20, 73–76. DOI: 10.1016/j.inoche.2012.02.020.
  • Popov, L. D.; Shcherbakov, IN.; Shvets, A. A.; Kogan, V. A.; Rebrova, O. N. Hydrogen Bonds in Ortho-Phosphorylated Phenols. Zh. Obshch. Khim 1994, 64, 236–238.
  • Shvets, A. A.; Popov, L. D.; Kogan, V. A.; Litvinov, V. V.; Etmetchenko, L. N. Complexes of Transition Metals with Phosphorus-Containing Ligands. Inner-Complexes of Copper(II), Nickel(II), Cobalt(II), Zinc(II), and Palladium(II) with (2-Hydroxyphenyl)Diphenylphosphine Selenide. Zh. Obshch. Khim. 1988, 58, 1046–1049.
  • Popov, L. D.; Bondarenko, G. I.; Shvets, A. A.; Etmetchenko, L. N. Complexes of Transition-Metals with Phosphorus-Containing Ligands - Structure of Copper(II) Chelates with Diphenyl(2-Hydroxyphenyl)Phosphine Chalcogenes. Zh. Obshch. Khim. 1991, 61, 300–304.
  • Beganskiene, A.; Nikishkin, N. I.; Luck, R. L.; Urnezius, E. Syntheses of Symmetric and Unsymmetric 2,6-Bis(Phosphino)Phenols. Heteroatom Chem. 2006, 17, 656–663. DOI: 10.1002/hc.20251.
  • Beganskiene, A.; Kongprakaiwoot, N.; Luck, R. L.; Urnezius, E. Synthesis of 2,6-Bis(Bis(2-(Methylthio)Phenyl)Phosphino)-4-Methylphenol, a Novel Polydentate Ligand Containing Two Tripodal [S,S,P,O] Coordination Pockets; Crystal Structure of the Dimeric Tl(I) Complex. Z. Anorg. Allg. Chem. 2006, 632, 1879–1884. DOI: 10.1002/zaac.200600119.
  • Xiong, S.; Shoshani, M. M.; Zhang, X.; Spinney, H. A.; Nett, A. J.; Henderson, B. S.; Miller, T. F.; Agapie, T. Efficient Copolymerization of Acrylate and Ethylene with Neutral P, O-Chelated Nickel Catalysts: Mechanistic Investigations of Monomer Insertion and Chelate Formation. J. Am. Chem. Soc. 2021, 143, 6516–6527. DOI: 10.1021/jacs.1c00566.
  • Yue, K.; Guo, Y.-H.; Pan, J.-Q.; He, K.; Qiao, Y.-Y.; Li, Q.-S.; Xu, F.-B. Novel Self-Adaptive Boat-Shaped Complexes with a Tetraphosphine Ligand. Dalton Trans. 2018, 47, 13689–13695. DOI: 10.1039/c8dt02498g.
  • Murphy, P. J.; Boeckemeier, H. Arylphosphines and Derivatives. Sci. Synth. 2007, 31b, 2057–2081. DOI: 10.1055/sos-SD-031-02336.
  • Wuts, P. G. M.; Greene, T. W. Protection for Phenols and Catechols. Greene’s Protective Groups in Organic Synthesis, 4th Ed, John Wiley & Sons: Hoboken, New Jersey, 2006, 367–430 DOI: 10.1002/9780470053485.ch3
  • Rauchfuss, T. B. o-Diphenylphosphinophenol and Its Coordination Compounds. Inorg. Chem. 1977, 16, 2966–2968. DOI: 10.1021/ic50177a062.
  • https://pubchem.ncbi.nlm.nih.gov/compound/Chloromethyl-methyl-ether.
  • Wilting, A.; Kügler, M.; Siewert, I. Phenol Based-Ligands with Two Adjacent N,N′,O-Binding Pockets. Z Anorg. Allg. Chem. 2015, 641, 2498–2505. DOI: 10.1002/zaac.201500599.
  • Matosziuk, L. M.; Harney, A. S.; MacRenaris, K. W.; Meade, T. J. Synthesis, Characterization, and In Vitro Testing of a Bacteria-Targeted MR Contrast Agent. Eur. J. Inorg. Chem. 2012, 2012, 2099–2107. DOI: 10.1002/ejic.201101362.
  • Choi, P. J.; Rathwell, D. C. K.; Brimble, M. A. Synthesis of 6,6-Bisbenzannulated Spiroketals Related to the Rubromycins Using a Double Intramolecular hetero-Michael Addition (DIHMA). Tetrahedron Lett. 2009, 50, 3245–3248. DOI: 10.1016/j.tetlet.2009.02.030.
  • https://pubchem.ncbi.nlm.nih.gov/compound/Chloromethyl-ethyl-ether.
  • Priya, S.; Balakrishna, M. S.; Mague, J. T. Mononuclear and Heterodinuclear Transition Metal Complexes of Functionalized Phosphines. J. Organomet. Chem. 2004, 689, 3335–3349. DOI: 10.1016/j.jorganchem.2004.07.041.
  • Heinicke, J.; Jux, U.; Kadyrov, R.; He, M. P/O Ligand Systems: Synthesis and Reactivity of Primary and Secondary o-Phosphinophenols. Heteroat. Chem. 1997, 8, 383–396. DOI: 10.1002/(SICI)1098-1071(1997)8:5 < 383::AID-HC3 > 3.0.CO;2-A.
  • Heinicke, J.; Kadyrov, R.; Kindermann, M. K.; Kloss, M.; Fischer, A.; Jones, P. G. Syntheses, Structures, and Reactivity of 1-Phosphinylnaphth-2-Ols. Chem. Ber. 1996, 129, 1061–1071. DOI: 10.1002/cber.19961291223.
  • Pettinari, C.; Marchetti, F.; Cingolani, A.; Drozdov, A.; Troyanov, S. Unexpected Synthesis of (Bis(Diphenylphosphinoyl)Ethane)·2(2,2- Dihydroperoxypropane) 1 : 2 Adduct: A New Route to Stable Organic Dihydroperoxides. Chem. Commun. 2000, 1901–1902. DOI: 10.1039/b005221n.
  • Ahn, S. H.; Cluff, K. J.; Bhuvanesh, N.; Blümel, J. Hydrogen Peroxide and Di(Hydroperoxy)Propane Adducts of Phosphine Oxides as Stoichiometric and Soluble Oxidizing Agents. Angew. Chem. Int. Ed. Engl. 2015, 54, 13341–13345. DOI: 10.1002/anie.201505291.
  • Ahn, S. H.; Lindhardt, D.; Bhuvanesh, N.; Blümel, J. Di(Hydroperoxy)Cycloalkanes Stabilized via Hydrogen Bonding by Phosphine Oxides: Safe and Efficient Baeyer–Villiger Oxidants. ACS Sustain. Chem. Eng. 2018, 6, 6829–6840. DOI: 10.1021/acssuschemeng.8b00652.
  • Ahn, S. H.; Bhuvanesh, N.; Blümel, J. Di(Hydroperoxy)Alkane Adducts of Phosphine Oxides: Safe, Solid, Stoichiometric, and Soluble Oxidizing Agents. Chemistry 2017, 23, 16998–17009. DOI: 10.1002/chem.201703676.
  • Arp, F. F.; Ahn, S. H.; Bhuvanesh, N.; Blumel, J. Selective Synthesis and Stabilization of Peroxides via Phosphine Oxides. New J. Chem. 2019, 43, 17174–17181. DOI: 10.1039/C9NJ04858H.
  • Albright, T. A.; Freeman, W. J.; Schweizer, E. E. Nuclear Magnetic Resonance Studies. IV. Carbon and Phosphorus Nuclear Magnetic Resonance of Phosphine Oxides and Related Compounds. J. Org. Chem. 1975, 40, 3437–3441. DOI: 10.1021/jo00911a030.
  • Beckmann, U.; Süslüyan, D.; Kunz, P. C. Is the 1J PSe Coupling Constant a Reliable Probe for the Basicity of Phosphines? A 31P NMR Study. Phosphorus Sulfur Silicon Relat. Elem. 2011, 186, 2061–2070. DOI: 10.1080/10426507.2010.547892.
  • Miesel, D.; Hildebrandt, A.; Korb, M.; Low, P. J.; Lang, H. Synthesis and (Spectro)Electrochemical Behavior of 2,5-Diferrocenyl-1-Phenyl-1H-Phosphole. Organometallics 2013, 32, 2993–3002. DOI: 10.1021/om400201b.
  • Czauderna, C. F.; Jarvis, A. G.; Heutz, F. J. L.; Cordes, D. B.; Slawin, A. M. Z.; van der Vlugt, J. I.; Kamer,.; P. C.; J. Chiral Wide-Bite-Angle Diphosphine Ligands: Synthesis, Coordination Chemistry, and Application in Pd-Catalyzed Allylic Alkylation. Organometallics 2015, 34, 1608–1618. DOI: 10.1021/om5008055.
  • Rogacheva, Y. I.; Baulin, D. V.; Baulin, V. E.; Tsivadze, A. Y. Functionalization of 2-Phosphoryl-Substituted Phenols. Russ. J. Gen. Chem. 2019, 89, 1595–1603. DOI: 10.1134/S1070363219080097.
  • Al-Farhan, K. A. Crystal Structure of Triphenylphosphine Oxide. J. Crystallogr. Spectrosc. Res. 1992, 22, 687–689. DOI: 10.1007/BF01160986.
  • Marszaukowski, F.; Boeré, R. T.; Wohnrath, K. Frustrated and Realized Hydrogen Bonding in 4-Hydroxy-3,5-Ditertbutylphenylphosphine Derivatives. Cryst. Growth Des. 2022, 22, 2512–2533. DOI: 10.1021/acs.cgd.2c00020.
  • Yamamura, M.; Kano, N.; Kawashima, T. Systematic Study on the Structures and Reactivity of Hydrazobenzenes and Azobenzenes Bearing a Chalcogenophosphoryl Group. Inorg. Chem. 2006, 45, 6497–6507. DOI: 10.1021/ic0601790.
  • Goodwin, N. J.; Henderson, W.; Nicholson, B. K. Hydrogen Bonding in Hydroxymethylphosphine Chalcogenides. Inorg. Chim. Acta 2002, 335, 113–118. DOI: 10.1016/S0020-1693(02)00811-3.
  • Sheldrick, G. M. Program for Crystal Structure Refinement. University of Göttingen, Göttingen; 1997.
  • Sheldrick, G. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. DOI: 10.1107/S2053229614024218.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.