79
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Ultrasound‐promoted green synthesis under montmorillonite K10 catalysis, characterization, ADME properties, and molecular docking study of a series of N-cyclic imides substituted benzenesulfonamide as possible inhibitors of human carbonic anhydrase I and II

Pages 232-245 | Received 30 Jun 2022, Accepted 07 Oct 2022, Published online: 07 Nov 2022

References

  • Joshi, S.; Khosla, N. QSAR Study on Antibacterial Activity of Sulphonamides and Derived Mannich Bases. Bioorg. Med. Chem. Lett. 2003, 13, 3747–3751. DOI: 10.1016/j.bmcl.2003.08.017.
  • Joshi, S.; Khosla, N.; Tiwari, P. In Vitro Study of Some Medicinally Important Mannich Bases Derived from Antitubercular Agent. Bioorg. Med. Chem. 2004, 12, 571–576. DOI: 10.1016/j.bmc.2003.11.001.
  • Kamal, A.; Khan, M. N. A.; Reddy, K. S.; Rohini, K.; Sastry, G. N.; Sateesh, B.; Sridhar, B. Synthesis, Structure Analysis, and Antibacterial Activity of Some Novel 10-Substituted 2-(4-Piperidyl/Phenyl)-5,5-Dioxo[1,2,4]Triazolo[1,5-b][1,2,4]Benzothiadiazine Derivatives. Bioorg. Med. Chem. Lett. 2007, 17, 5400–5405. DOI: 10.1016/j.bmcl.2007.07.043.
  • Gadad, A. K.; Mahajanshetti, C. S.; Nimbalkar, S.; Raichurkar, A. Synthesis and Antibacterial Activity of Some 5-Guanylhydrazone/Thiocyanato-6-Arylimidazo [2, 1-b]-1, 3, 4-Thiadiazole-2-Sulfonamide Derivatives. Eur. J. Med. Chem. 2000, 35, 853–857. DOI: 10.1016/S0223-5234(00)00166-5.
  • a) Scozzafava, A.; Owa, T.; Mastrolorenzo, A.; Supuran, C. T. Anticancer and Antiviral Sulfonamides. Curr. Med. Chem. 2003, 10, 925–953. DOI: 10.2174/0929867033457647. b) Wan, Y.; Fang, G.; Chen, H.; Deng, X.; Tang, Z. Sulfonamide Derivatives as Potential anti-Cancer Agents and Their SARs Elucidation. Eur. J. Med. Chem. 2021. 226, 113837–113848. DOI: 10.1016/j.ejmech.2021.113837 c) Zhang, X.; Rakesh, K.P.; Shantharam, C.S.; Manukumar, H.M.; Asiri, A.M.; Marwani, H.M.; Qin, H.L. Podophyllotoxin Derivatives as an Excellent Anticancer Aspirant for Future Chemotherapy: A Key Current Imminent Needs. Bioorg. Med. Chem. 2018, 26, 340–355. DOI: 10.1016/j.bmc.2017.11.026. d) Weber, A.; Casini, A.; Heine, A.; Kuhn, D.; Supuran, C.T.; Unexpected Nanomolar Inhibition of Carbonic Anhydrase by COX-2-Selective Celecoxib: new Pharmacological Opportunities Due to Related Binding Site Recognition. J. Med. Chem. 2004, 47, 550–557. DOI: 10.1021/jm030912m.e) Wang, S.M; Zha, G.F.; Rakesh, K.P.; Darshini, N.; Shubhavathi, T.; Vivek, H.K.; Mallesha, N.; Qin, H.L. Synthesis of Benzo[d]Thiazole-Hydrazone Analogues: Molecular Docking and SAR Studies of Potential H+/K + ATPase Inhibitors and anti-Inflammatory Agents, Med. Chem. Commun. 2017, 8, 1173–1189. DOI: 10.1039/C7MD00111H.
  • a) Lal, J.; Gupta, S.K.; Thavaselvam, D.; Agarwal, D.D. Biological Activity, Design, Synthesis and Structure Activity Relationship of Some Novel Derivatives of Curcumin Containing Sulphonamides. Eur. J. Med. Chem. 2013, 64, 579–588. doi:10.1016/j.ejmech.2013.03.012.b) Allen, H.B.; Lee, D.A.; A General Practice Assessment of Mefruside ('Baycaron’) in the Treatment of Oedema and Hypertension. Curr. Med. Res. Opin. 1973, 1, 547–53. DOI: 10.1185/03007997309111720. c) Quintana, C.; Silva, G.; Klahn, A.H.; Artigas, V.; Fuentealba, M.; Biot, C.; Halloum, I.; Kremer, L.; Novoa, N.; Arancibia, R. New Cyrhetrenyl and Ferrocenyl Sulfonamides: Synthesis, Characterization, X-Ray Crystallography, Theoretical Study, and anti-Mycobacterium tuberculosis Activity. Polyhedron 2017, 134, 166–172. DOI: 10.1016/j.poly.2017.06.015. d) Gawin, R.; De Clercq, E.; Naesens, L.; Koszytkowska-Stawinska, M. Synthesis and Antiviral Evaluation of Acyclic Azanucleosides Developed from Sulfanilamide as a Lead Structure. Bioorg. Med. Chem. 2008, 16, 8379–8389. DOI: 10.1016/j.bmc.2008.08.041.
  • a) Maren, T. H. Relation between Structure and Biological Activity of Sulfonamides. Ann. Rev. Pharmacol. Toxicol. 1976, 16, 309–327. DOI: 10.1146/annurev.pa.16.040176.001521.b) Hamaguchi, T.; Hirose, T.; Asakawa, H.; Itoh. Y.; Tokunaga, K.; Tomita, K.; Masuda, H.; Watanabe, N.; Namba, M. Efficacy of Glimepiride in Type 2 Diabetic Patients Treated with Glibenclamide. Diabetes Res. Clin. Pract. 2004, 66, 129–132. DOI:10.1016/j.diabres.2003.12.012.
  • Zimmerman, S.; Innocenti, A.; Casini, A.; Ferry, J. G.; Scozzafava, A.; Supuran, C. T. Carbonic Anhydrase Inhibitors. Inhibition of the Prokariotic Beta and Gamma-Class Enzymes from Archaea with Sulfonamides. Bioorg. Med. Chem. Lett. 2004, 14, 6001–6006. DOI: 10.1016/j.bmcl.2004.09.085.
  • Garaj, V.; Puccetti, L.; Fasolis, G.; Winum, J. Y.; Montero, J. L.; Scozzafava, A.; Vullo, D.; Innocenti, A.; Supuran, C. T. Carbonic Anhydrase Inhibitors: Synthesis and Inhibition of Cytosolic/Tumor-Associated Carbonic Anhydrase Isozymes I, II, and IX with Sulfonamides Incorporating 1,2,4-Triazine Moieties. Bioorg. Med. Chem. Lett. 2004, 14, 5427–5433. DOI: 10.1016/j.bmcl.2004.07.087.
  • Puccetti, L.; Fasolis, G.; Vullo, D.; Chohan, Z. H.; Scozzafava, A.; Supuran, C. T. Carbonic Anhydrase Inhibitors. Inhibition of Cytosolic/Tumor-Associated Carbonic Anhydrase Isozymes I, II, IX and XII with Schiff’s Bases Incorporating Chromone and Aromatic Sulfonamide Moieties, and Their Zinc Complexes. Bioorg. Med. Chem. Lett. 2005, 15, 3096–3101. DOI: 10.1016/j.bmcl.2005.04.055.
  • Bahadur, A.; Iqbal, S.; Muneer, S.; Alsaab, H.; Awwad, N.; Ibrahium, H. A. Synthesis, Carbonic Anhydrase Enzyme Inhibition Evaluations, and Anticancer Studies of Sulfonamide Based Thiadiazole Derivatives. Bioorg. Med. Chem. Lett. 2022, 57, 128520–128539. DOI: 10.1016/j.bmcl.2021.128520.
  • Guzel, O.; Innocenti, A.; Scozzafava, A.; Salman, A.; Supuran, C. T. Carbonic Anhydrase Inhibitors. Phenacetyl-, Pyridylacetyl- and Thienylacetyl Substituted Aromatic Sulfonamides Act as Potent and Selective Isoform VII Inhibitors. Bioorg. Med. Chem. Lett. 2009, 19, 3170–3173. DOI: 10.1016/j.bmcl.2009.04.123.
  • Atmaca, U.; Kaya, R.; Karaman, H. S.; Çelik, M.; Gülçin, İ. Synthesis of Oxazolidinone from Enantiomerically Enriched Allylic Alcohols and Determination of Their Molecular Docking and Biologic Activities. Bioorg. Chem. 2019, 88, 102980–102991. DOI: 10.1016/j.bioorg.2019.102980.
  • Puscas, I.; Buzas, G. Treatment of Duodenal Ulcers with Ethoxzolamide, an Inhibitor of Gastric Mucosa Carbonic Anhydrase. Int. J. Clin. Pharmacol. Ther. 1986, 24, 97–99.
  • Clemett, D.; Goa, K. L. Celecoxib: A Review of Its Use in Osteoarthritis, Rheumatoid Arthritis and Acute Pain. Drugs 2000, 59, 957–980. DOI: 10.2165/00003495-200059040-00017.
  • Gündoğdu, S.; Türkeş, C.; Arslan, M.; Demir, Y.; Beydemir, Ş. New Isoindole-1,3-Dione Substituted Sulfonamides as Potent Inhibitors of Carbonic Anhydrase and Acetylcholinesterase: Design, Synthesis, and Biological Evaluation. ChemistrySelect 2019, 4, 13347–13355. DOI: 10.1002/slct.201903458.
  • Laronze, M.; Boisbrun, M.; Léonce, S.; Pfeiffer, B.; Renard, P.; Lozach, O.; Meijer, L.; Lansiaux, A.; Bailly, C.; Sapi, J.; Laronze, J.-Y. Synthesis and Anticancer Activity of New Pyrrolocarbazoles and Pyrrolo-β-Carbolines. Bioorg. Med. Chem. 2005, 13, 2263–2283. DOI: 10.1016/j.bmc.2004.12.045.
  • Amr, A. E. G. E.; Sabry, N. M.; Abdulla, M. M. Synthesis, Reactions, and Anti-Inflammatory Activity of Heterocyclic Systems Fused to a Thiophene Moiety Using Citrazinic Acid as Synthon. Monatsh. Chem. 2007, 138, 699–707. DOI: 10.1007/s00706-007-0651-0.
  • Anizon, F.; Belin, L.; Moreau, P.; Sancelme, M.; Voldoire, A.; Prudhomme, M.; Ollier, M.; Sevère, D.; Riou, J. F.; Bailly, C.; et al. Syntheses and Biological Activities (Topoisomerase Inhibition and Antitumor and Antimicrobial Properties) of Rebeccamycin Analogues Bearing Modified Sugar Moieties and Substituted on the Imide Nitrogen with a Methyl Group. J. Med. Chem. 1997, 40, 3456–3465. DOI: 10.1021/jm9702084.
  • Zentz, F.; Valla, A.; Le Guillou, R.; Labia, R.; Mathot, A. G.; Sirot, D. Synthesis and Antimicrobial Activities of N-Substituted Imides. Farmaco 2002, 57, 421–426. DOI: 10.1016/S0014-827X(02)01217-X.
  • Abdel-Aziz, A. A.-M. Novel and Versatile Methodology for Synthesis of Cyclic Imides and Evaluation of Theircytotoxic, DNA Binding, Apoptotic Inducing Activities and Molecular Modeling Study. Eur. J. Med. Chem. 2007, 42, 614–626. DOI: 10.1016/j.ejmech.2006.12.003.
  • Abdel-Aziz, A. A.-M.; ElTahir, K. E. H.; Asiri, Y. A. Synthesis, anti-Inflammatory Activity and COX-1/COX-2 Inhibition of Novel Substituted Cyclic Imides. Part 1: Molecular Docking Study. Eur. J. Med. Chem. 2011, 46, 1648–1655. DOI: 10.1016/j.ejmech.2011.02.013.
  • Abdel-Aziz, A. A.-M.; El-Azab, A. S.; Attia, S. M.; Al-Obaid, A. M.; Al-Omar, M. A.; El-Subbagh, H. I. Synthesis and Biological Evaluation of Some Novel Cyclic-Imides as Hypoglycaemic, anti-Hyperlipidemic Agents. Eur. J. Med. Chem. 2011, 46, 4324–4329. DOI: 10.1016/j.ejmech.2011.07.002.
  • Schafer, P. H.; Parton, A.; Gandhi, A. K.; Capone, L.; Adams, M.; Wu, L.; Bartlett, J. B.; Loveland, M. A.; Gilhar, A.; Cheung, Y.-F.; et al. Apremilast, a cAMP Phosphodiesterase-4 Inhibitor, Demonstrates anti-Inflammatory Activity in Vitro and in a Model of Psoriasis. Br. J. Pharmacol. 2010, 159, 842–855. DOI: 10.1111/j.1476-5381.2009.00559.x.
  • Abdel-Aziz, A. M.; El-Azab, A. S.; Ceruso, M.; Supuran, C. T. Carbonic Anhydrase Inhibitory Activity of Sulfonamides and Carboxylic Acids Incorporating Cyclic Imide Scaffolds. Bioorg. Med. Chem. Lett. 2014, 24, 5185–5189. DOI: 10.1016/j.bmcl.2014.09.076.
  • Shaki, H.; Khosravi, A.; Gharanjig, K.; Mahboubi, A. Synthesis and Biological Properties of Novel Cationic Fluorescent Dye. Int. J. Tec. Res. Appl. 2015, 29, 103–106.
  • Bougheloum, C.; Barbey, C.; Berredjem, M.; Messalhi, A.; Dupont, N. Synthesis and Structural Study of N-Acetyl-1,2,3,4-Tetrahydroisoquinoline-2-Sulfonamide Obtained Using H6P2W18O62 as Acidic Solid Catalyst. J. Mol. Struct. 2013, 1041, 6–15. DOI: 10.1016/j.molstruc.2013.02.018.
  • Bougheloum, C.; Belghiche, R.; Messalhi, A. Synthesis of New Substituted N-Sulfonyl Pyrrolidine-2,5-Dione Using Dawson-Type Heteropolyacid as Catalyst. Phosphorus Sulf. Silicon Relat. Element. 2015, 190, 269–276. DOI: 10.1080/10426507.2014.947413.
  • Bougheloum, C.; Guezane Lakoud, S.; Belghiche, R.; Messalhi, A. Simple, Rapid and Clean Condensation of Sulfonamide and Maleic Anhydride Derivatives: Synthesis of Novel 1 H - Pyrrole-2,5-Diones Underheterogeneous Conditions. Phosphorus Sulf. Silicon Relat. Element. 2016, 191, 1344–1350. DOI: 10.1080/10426507.2016.1193504.
  • Benali, N.; Bougheloum, C.; Alioua, S.; Belghiche, R.; Messalhi, A. Efficient N-Acylation of Sulfonamides Using Cesium Salt of Wells–Dawson Heteropolyacid as Catalyst: Synthesis of New N-Acyl Sulfonamides and Cyclic Imides. Synth. Commun. 2018, 48, 3099–3112. DOI: 10.1080/00397911.2018.1535077.
  • Driowya, M.; Puissant, A.; Robert, G.; Auberger, P.; Benhida, R.; Bougrin, K. Ultrasound-Assisted One-Pot Synthesis of Anti-CML Nucleosides Featuring 1, 2, 3-Triazole Nucleobase under Iron-Copper Catalysis. Ultrason Sonochem. 2012, 19, 1132–1138. DOI: 10.1016/j.ultsonch.2012.04.007.
  • Pasha, M. A.; Nagashree, S. A One-Pot Three-Component Synthesis of 4, 6-Diarylpyrimidin-2 (1H)-Ones (DAPMs) Using Atomized Sodium in THF under Sonic Condition. Ultrason Sonochem. 2014, 21, 1279–1283. DOI: 10.1016/j.ultsonch.2013.12.021.
  • Arafa, W. A.; Shaker, R. M. A Facile Green Chemistry Approaches towards the Synthesis of bis-Schiff Bases Using Ultrasound versus Microwave and Conventional Method without Catalyst. Arkivoc 2016, 3, 10–3998. DOI: 10.3998/ark.5550190.p009.464.
  • Motokura, K.; Matsunaga, S.; Miyaji, A.; Sakamoto, Y.; Baba, T. Heterogeneous Allylsilation of Aromatic and Aliphatic Alkenes Catalyzed by Proton-Exchanged Montmorillonite. Org. Lett. 2010, 12, 1508–1511. DOI: 10.1021/ol100228t.
  • Motokura, K.; Tada, M.; Iwasawa, Y. Layered Materials with Coexisting Acidic and Basic Sites for Catalytic One-Pot Reaction Sequences. J. Am. Chem. Soc. 2009, 131, 7944–7945. DOI: 10.1021/ja9012003.
  • Nose, M.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Reusable Montmorillonite-ntrappedOrganocatalyst for Asymmetric Diels-Alder Reaction. Tetrahedron. Lett. 2009, 49, 5464–5466. DOI: 10.1016/j.tetlet.2008.07.011.
  • Neji, S. B.; Trabelsi, M.; Frikha, M. H. Esterification of Fatty Acids with Short-Chain Alcohols over Commercial Acid Clays in a Semi-Continuous Reactor. Energies 2009, 2, 1107–1117. DOI: 10.3390/en20401107.
  • Dintzner, M. R.; Mondjinou, Y. A.; Pileggi, D. J. Montmorillonite Clay-Catalyzed Cyclotrimerization and Oxidation of Aliphatic Aldehydes. Tetrahedron. Lett. 2010, 51, 826–827. DOI: 10.1016/j.tetlet.2009.12.009.
  • Lipinski, C. A. Lead- and Drug-like Compounds: The Rule-of-Five Revolution. Drug Discov. Today Technol. 2004, 1, 337–341. DOI: 10.1016/j.ddtec.2004.11.007.
  • Jadhav, P. B.; Yadav, A. R.; Gore, M. G. Concept of Drug Likeness in Pharmaceutical Research. Int. J. Pharm. Bio. Sci. 2015, 6, 142–154.
  • Veber, D. F.; Johnson, S. R.; Cheng, H. Y.; Smith, B. R.; Ward, K. W.; Kopple, K. D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. DOI: 10.1021/jm020017n.
  • Trott, O.; Olson, A. J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. DOI: 10.1002/jcc.21334.
  • SanDiego, C. A. Dassault Systems Biovia, Discovery Studio Modeling Environment, Release. 2017.
  • Chakravarty, S.; Kannan, K. K. Drug-Protein Interactions. Refined Structures of Three Sulfonamide Drug Complexes of Human Carbonic Anhydrase I Enzyme. J. Mol. Biol. 1994, 243, 298–309. DOI: 10.1006/jmbi.1994.1655.
  • Sippel, K. H.; Robbins, A. H.; Domsic, J.; Genis, C.; Agbandje-McKenna, M.; McKenna, R. High-Resolution Structure of Human Carbonic Anhydrase II Complexed with Acetazolamide Reveals Insights into Inhibitor Drug Design. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2009, 65, 992–995. DOI: 10.1107/S1744309109036665.
  • Morkūnaite, V.; Baranauskiene, L.; Zubriene, A.; Kairys, V.; Ivanova, J.; Trapencieris, P.; Matulis, D. Saccharin Sulfonamides as Inhibitors of Carbonic Anhydrases I, II, VII, XII, and XIII. Biomed. Res. Int. 2014, 2010, 1–9. DOI: 10.1155/2014/638902.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.