396
Views
0
CrossRef citations to date
0
Altmetric
Review

A review on the synthesis and biological relevance of benzo[b]thiophene derivatives

, , , , , & show all
Pages 283-299 | Received 09 Jun 2022, Accepted 31 Oct 2022, Published online: 16 Nov 2022

References

  • Fakhr, I. M. I.; Radwan, M. A. A.; El-Batran, S.; Abd El-Salam, O. M. E.; El-Shenawy, S. M. Synthesis and Pharmacological Evaluation of 2-Substituted Benzo[b]Thiophenes as anti-Inflammatory and Analgesic Agents. Eur. J. Med. Chem. 2009, 44, 1718–1725. DOI: 10.1016/j.ejmech.2008.02.034.
  • Jagtap, V. A.; Agasimundin, Y. S. Synthesis and Preliminary Evaluation of Some Amino-N′-[Substituted] 4,5,6,7-Tetrahydro-1-Benzothiophene-3-Carbohydrazide as Antimicrobial Agents. J. Pharm. Res. 2015, 9, 10–14. www.jprsolutions.info.
  • Berrade, L.; Aisa, B.; Ramirez, M. J.; Galiano, S.; Guccione, S.; Moltzau, L. R.; Levy, F. O.; Nicoletti, F.; Battaglia, G.; Molinaro, G.; et al. Novel Benzo[b]Thiophene Derivatives as New Potential Antidepressants with Rapid Onset of Action. J. Med. Chem. 2011, 54, 3086–3090. DOI: 10.1021/jm2000773.
  • Bryant, H. U.; Dere, W. H. Selective Estrogen Receptor Modulators: An Alternative to Hormone Replacement Therapy. Proc. Soc. Exp. Biol. Med. 1998, 217, 45–52. DOI: 10.3181/00379727-217-44204.
  • Qin, Z.; Kastrati, I.; Chandrasena, E. P.; Liu, H.; Yao, P.; Petukhov, P. A.; Bolton, J. L.; Thatcher, G. R. Benzothiophene Selective Estrogen Receptor Modulators with Modulated Oxidative Activity and Receptor Affinity. J. Med. Chem. 2007, 50, 2682–2692. DOI: 10.1021/jm070079j.
  • Romagnoli, R.; Baraldi, P. G.; Carrion, M. D.; Cara, C. L.; Preti, D.; Fruttarolo, F.; Pavani, M. G.; Tabrizi, M. A.; Tolomeo, M.; Grimaudo, S.; et al. Synthesis and Biological Evaluation of 2- and 3-Aminobenzo[b]Thiophene Derivatives as Antimitotic Agents and Inhibitors of Tubulin Polymerization. J. Med. Chem. 2007, 50, 2273–2277. DOI: 10.1021/jm070050f.
  • Mourey, R. J.; Burnette, B. L.; Brustkern, S. J.; Daniels, J. S.; Hirsch, J. L.; Hood, W. F.; Meyers, M. J.; Mnich, S. J.; Pierce, B. S.; Saabye, M. J.; et al. A Benzothiophene Inhibitor of Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 Inhibits Tumor Necrosis Factor α Production and Has Oral anti-Inflammatory Efficacy in Acute and Chronic Models of Inflammation. J. Pharmacol. Exp. Ther. 2010, 333, 797–807. DOI: 10.1124/jpet.110.166173.
  • Premalatha, S.; Rambabu, G.; Hatti, I.; Ramachandran, D. Design, Synthesis and Biological Evaluation of 3-(3,4,5-Trimethoxyphenyl)-5-[2-(5-Arylbenzo[b]Thiophen-3-yl)Oxazol-5-yl]Isoxazole Derivatives as Anticancer Agents. Lett. Org. Chem. 2020, 17, 325–351. DOI: 10.2174/1570178616666191004105445.
  • Martorana, A.; Gentile, C.; Perricone, U.; Piccionello, A. P.; Bartolotta, R.; Terenzi, A.; Pace, A.; Mingoia, F.; Almerico, A. M.; Lauria, A. Synthesis, Antiproliferative Activity, and in-Silico Insights of New 3-Benzoylaminobenzo[b]Thiophene Derivatives. Eur. J. Med. Chem. 2015, 90, 537–546. DOI: 10.1016/j.ejmech.2014.12.002.
  • Loidreau, Y.; Deau, E.; Marchand, P.; Nourrisson, M.-R.; Logé, C.; Coadou, G.; Loaëc, N.; Meijer, L.; Besson, T. Synthesis and Molecular Modelling Studies of 8-Arylpyrido[3′,2′:4,5]Thieno[3,2-d]Pyrimidin-4-Amines as Multitarget Ser/Thr Kinases Inhibitors. Eur. J. Med. Chem. 2015, 92, 124–134. DOI: 10.1016/j.ejmech.2014.12.038.
  • Barakat, A.; Soliman, S. M.; Alshahrani, S.; Islam, M. S.; Ali, M.; Al-Majid, A. M.; Yousuf, S. Synthesis, X-Ray Single Crystal, Conformational Analysis and Cholinesterase Inhibitory Activity of a New Spiropyrrolidine Scaffold Tethered Benzo[b]Thiophene Analogue. Crystals 2020, 10, 120. DOI: 10.3390/cryst10020120.
  • Rupa, S. A.; Moni, M. R.; Patwary, M. A. M.; Mahmud, M. M.; Haque, M. A.; Uddin, J.; Abedin, S. M. T. Synthesis of Novel Tritopic Hydrazone Ligands: Spectroscopy, Biological Activity, DFT, and Molecular Docking Studies. Molecules 2022, 27, 1656. DOI: 10.3390/molecules27051656.
  • (a) Rackham, M. D.; Brannigan, J. A.; Moss, D. K.; Yu, Z.; Wilkinson, A. J.; Holder, A. A.; Tate, E. W.; Leatherbarrow, R. J. Discovery of Novel and Ligand-Efficient Inhibitors of Plasmodium falciparum and Plasmodium vivax N-Myristoyltransferase. J. Med. Chem. 2013, 56, 371–375. 10.1021/jm301474t.
  • Aganagowda, G.; Thamyongkit, P.; Petsom, A. Synthesis and Antimicrobial Activities of Benzothiophene Derivatives. J. Chil. Chem. Soc. 2012, 57, 1043–1047. DOI: 10.4067/S0717-97072012000100019.
  • Moinet, G.; Leriche, C.; Kergoat, M. Antidiabetic Compounds Comprising Benzofuran and Benzothiophene Derivatives. Patent. EP1685121 A1. PCT/EP2004/012075. 2005.
  • Malamas, M. S.; Sredy, J.; Moxham, C.; Katz, A.; Xu, W.; Mc Devitt, R.; Adebayo, F. O.; Sawicki, D. R.; Seestaller, L.; Sullivan, D.; Taylor, J. R. Novel Benzofuran and Benzothiophene Biphenyls as Inhibitors of Protein Tyrosine Phosphatase 1B with Antihyperglycemic Properties. J. Med. Chem. 2000, 43, 1293–1310. DOI: 10.1021/jm990560c.
  • Chang, Y. S.; Jeong, J. M.; Lee, Y.-S.; Kim, H. W.; Ganesha, R. B.; Kim, Y. J.; Lee, D. S.; Chung, J.-K.; Lee, M. C. Synthesis and Evaluation of Benzothiophene Derivatives as Ligands for Imaging β-Amyloidplaques in Alzheimer’s Disease. Nucl. Med. Biol. 2006, 33, 811–820. DOI: 10.1016/j.nucmedbio.2006.06.006.
  • Yang, Y.; Cui, M. Radiolabeled Bioactive Benzoheterocycles for Imaging β-Amyloid Plaques in Alzheimer’s Disease. Eur. J. Med. Chem. 2014, 87, 703–721. DOI: 10.1016/j.ejmech.2014.10.012.
  • Wang, M.; Jiang, X. Prospects and Challenges in Organosulfur Chemistry. ACS Sustain. Chem. Eng. 2022, 10, 671–677. DOI: 10.1021/acssuschemeng.1c07636.
  • Duc, D. X. Recent Progress in the Synthesis of Benzo[b]Thiophenes. COC 2020, 24, 2256–2271. DOI: 10.2174/138527282499920082151545.
  • Kondo, T.; Mitsudo, T-a Metal-Catalyzed Carbon-Sulfur Bond Formation. Chem Rev. 2000, 100, 3205–3220. DOI: 10.1021/cr9902749.
  • Yu, H.; Zhang, M.; Li, Y. Copper-Catalyzed Synthesis of Benzo[b]Thiophenes and Benzothiazoles Using Thiocarboxylic Acids as a Coupling Partner. J. Org. Chem. 2013, 78, 8898–8903. DOI: 10.1021/jo401353w.
  • Yan, K.; Yang, S.; Zhang, M.; Wei, W.; Liu, Y.; Tian, L.; Wang, H. Facile Access to Benzothiophenes through Metal-Free Iodine-Catalyzed Intermolecular Cyclization of Thiophenols and Alkynes. Synlett 2015, 26, 1890–1894. DOI: 10.1055/s-0034-1378841.
  • Sun, L.-L.; Deng, C.-L.; Tang, R.-Y.; Zhang, X.-G. CuI/TMEDA-Catalyzed Annulation of 2-Bromo Alkynyl Benzenes with Na2S: Synthesis of Benzo[b]Thiophenes. J. Org. Chem. 2011, 76, 7546–7550. DOI: 10.1021/jo201081v.
  • Nakamura, I.; Sato, T.; Yamamoto, Y. Gold-Catalyzed Intramolecular Carbothiolation of Alkynes: Synthesis of 2,3-Disubstituted Benzothiophenes from (α-Alkoxy Alkyl) (ortho-Alkynyl Phenyl) Sulfides. Angew. Chem. Int. Ed. Engl. 2006, 45, 4473–4475. DOI: 10.1002/anie.200601178.
  • Willis, M. C.; Taylor, D.; Gillmore, A. T. Palladium-Catalyzed Intramolecular O-Arylation of Enolates: Application to Benzo[b]Furan Synthesis. Org. Lett. 2004, 6, 4755–4757. DOI: 10.1021/ol047993g.
  • Nguyen, T. B.; Retailleau, P. DIPEA-Promoted Reaction of 2-Nitrochalcones with Elemental Sulfur: An Unusual Approach to 2-Benzoylbenzothiophenes. Org. Lett. 2017, 19, 4858–4860. DOI: 10.1021/acs.orglett.7b02321.
  • Kuhn, M.; Falk, F. C.; Paradies, J. Palladium-Catalyzed C–S Coupling: Access to Thioethers. Org. Lett. 2011, 13, 4100–4103. DOI: 10.1021/ol2016093.
  • Kong, Y.; Yu, L.; Fu, L.; Cao, J.; Lai, G.; Cui, Y.; Hu, Z.; Wang, G. Electrophilic Cyclization of o-Anisole- and o-Thioanisole-Substituted Ynamides: Synthesis of 2-Amidobenzofurans and 2-Amidobenzothiophenes. Synthesis 2013, 45, 1975–1982. DOI: 10.1055/s-0033-1338481.
  • Singh, S.; Nerella, S.; Pabbaraja, S.; Mehta, G. Stitching Ynones with Nitromethanes: Domino Synthesis of Functionally Enriched Benzofurans and Benzothiophenes. J. Org. Chem. 2021, 86, 12093–12106. DOI: 10.1021/acs.joc.1c01104.
  • Spiller, G. A. (Ed.) Caffeine, CRC Press: Boca Raton, 1998.
  • Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. DOI: 10.3322/caac.21660.
  • WHO. Cancer. World Health Organization. Retrieved on 2007-06-25. 2006. American Cancer Society. Available online: https://www.cancer.org/research/cancer-facts-statistics/global (accessed 1 June 2020).
  • Garcia, M.; Jemal, A.; Ward, E. M.; Center, M. M.; Hao, Y.; Siegel, R. L.; Thun, M. J. Global Cancer Facts& Figures. Atlanta, GA: American Cancer Society. 2007. Available online: https://www.cancer.org/research/cancer-facts-statistics/global (accessed 1 June 2020).
  • World Health Organization. Preventing Chronic Diseases: A Vital Investment: WHO Global Report. World Health Organization. 2005. Iris. https://apps.who.int/iris/handle/10665/43314.
  • Islam, M. S.; Ali, M.; Al-Majid, A. M.; Alamary, A. S.; Alshahrani, A. S.; Yousuf, S.; Choudhary, M. I.; Barakat, A. Bimetallic Iron-Palladium Catalyst System as a Lewis-Acid for the Synthesis of Novel Pharmacophores Based Indole Scaffold as Anticancer Agents. Molecules 2021, 26, 2212. DOI: 10.3390/molecules26082212.
  • Bai, C.; Wu, S.; Ren, S.; Zhu, M.; Luo, G.; Xiang, H. Benzothiophene Derivatives as Selective Estrogen Receptor Covalent Antagonists: Design, Synthesis and anti- ERα Activities. Bioorg. Med. Chem. 2021, 47, 116395. DOI: 10.1016/j.bmc.2021.116395.
  • Jiang, Q.; Chen, J.; Yang, C.; Yin, Y.; Yao, K. Quorum Sensing: A Prospective Therapeutic Target for Bacterial Diseases. Biomed. Res. Int. 2019, 2019, 2015978. DOI: 10.1155/2019/2015978.
  • Priyanka, S. Y.; Senthilkumar, G. P. Synthesis and Evaluation of Some Benzothiazole Derivatives as Antidiabetic Agents. Int. J. Pharmtech. Res. 2011, 3, 1–7.
  • Keri, R. S.; Chand, K.; Budagumpi, S.; Somappa, S. B.; Patil, S. A.; Nagaraja, B. M. An Overview of Benzo[b]thiophene-Based Medicinal Chemistry. Eur. J. Med. Chem. 2017, 138, 1002–1033. DOI: 10.1016/j.ejmech.2017.07.038.
  • Nagesh, H. K.; Padmashali, B.; Sandeep, C.; Yuvaraj, T. C. M.; Siddesh, M. B.; Mallikarjuna, S. M. Synthesis and Antimicrobial Activity of Benzothiophene Substituted Coumarins, Pyrimidines and Pyrazole as New Scaffold. Int. J. Pharm. Sci. Rev. Res. 2014, 28, 6–10. DOI: http://www.globalresearchonline.net.
  • Chawla, R.; Arora, A.; Parameswaran, M. K.; Sharma, P. C.; Michael, S.; Ravi, T. Synthesis of Novel 1,3,4-Oxadiazole Derivatives as Potential Antimicrobial Agents. Acta Poloniae Pharmaceutica-Drug Res. 2010, 67, 247–253.
  • Mikkelsen, T.; Lush, R.; Grossman, S. A.; Carson, K. A.; Fisher, J. D.; Alavi, J. B.; Rosenfeld, S. Phase II Clinical and Pharmacologic Study of Radiation Therapy and CarboxyAmido-Triazole (CAI) in Adults with Newly Diagnosed Glioblastoma Multiforme. Invest. New Drugs 2007, 25, 259–263. DOI: 10.1007/s10637-006-9023-6.
  • Thotla, K.; Noole, V.; Reddy, C. K. Synthesis and Antimicrobial Activity of a Novel Hybrid Benzo[b]Thiophene-1,2,3-Triazole Analogues. Chem. Data Collect. 2020, 27, 100361. DOI: 10.1016/j.cdc.2020.100361.
  • Meena, V. K.; Patidar, A. K.; Bhatnagar, M. Antimicrobial Activity of New Series of Benzothiophene Containing Thiazolidinone Derivatives. J. Adv Sci. Res. 2020, 11, 228–231. DOI: http://www.sciensage.info.
  • Bu, S.; Jiang, G.; Jiang, G.; Liu, J.; Lin, X.; Shen, J.; Xiong, Y.; Duan, X.; Wang, J.; Liao, X. Antibacterial Activity of Ruthenium Polypyridyl Complexes against Staphylococcus Aureus and Biofilms. J. Biol. Inorg. Chem. 2020, 25, 747–757. DOI: 10.1007/s00775-020-01797-w.
  • Liu, Q.; Xu, W.; Lu, S.; Jiang, J.; Zhou, J.; Shao, Z.; Liu, X.; Xu, L.; Xiong, Y.; Zheng, H.; et al. Landscape of Emerging and Re-Emerging Infectious Diseases in China: Impact of Ecology, Climate and Behaviour. Front. Med. 2018, 12, 3–22. DOI: 10.1007/s11684-017-0605-9.
  • Patil, P. S.; Chavan, S. M.; Toche, R. B.; Bhole, A. D.; Patil, V. M.; Aware, P. B. Synthesis of (3-Cyano-4,5,6,7-Tetrahydrobenzo[b]Thiophen-2-yl)Formamidine Derivatives as Effective Antimicrobial Agents. IOSR JAC 2017, 10, 96–100. DOI: http://www.iosrjournals.org.
  • Hooda, T.; Sharma, S.; Goyal, N. Synthesis, in Silico Designing, Microbiological Evaluation and Structure Activity Relationship of Novel Amide Derivatives of 1-(2,4-Dinitrophenyl)-2-(3-Methylbenzo[b]Thiophen-6yl)-1H-Benzo[d]Imidazole-5-Carboxylic Acid. Polycycl. Aromat. Compd. 2021, 42, 3361-3376. DOI: 10.1080/10406638.2020.1869793.
  • Seethaler, M.; Hertlein, T.; Wecklein, B.; Ymeraj, A.; Ohlsen, K.; Lalk, M.; Hilgeroth, A. Novel Small Molecule Antibacterials against Gram-Positive Pathogens of Staphyloccus and Enterococcus Species. Antibiotics 2019, 8, 210. DOI: 10.3390/antibiotics8040210.
  • Kallur, H. J.; Mathapati, P. S.; Singh, C. K.; Malpani, A. Synthesis, Characterization and Anthelmintic Screening of Some New Benzothiophene Derivatives. World J. Pharm. Res. 2020, 9, 1838–1849. DOI: http://www.wjpr.net.
  • Özbilgin, A.; Harman, M.; Karakuş, M.; Bart, A.; Töz, S.; Kurt, Ö.; Çavuş, İ.; Polat, E.; Gündüz, C.; Van Gool, T.; Özbel, Y. Leishmaniasis in Turkey: Visceral and Cutaneous Leishmaniasis Caused by Leishmania Donovani in Turkey. Acta Trop. 2017, 173, 90–96. DOI: 10.1016/j.actatropica.2017.05.032.
  • Unver, Y.; Unluer, D.; Direkel, S.; Durdagi, S. Bis-Benzothiophene Schiff Bases: Synthesis and Insilico-Guided Biological Activity Studies. Turk. J. Chem. 2020, 44, 1164–1176. DOI: 10.3906/kim-2004-78.
  • Borsari, C.; Anton-Jimenez, M. D.; Eick, J.; Bifeld, E.; Torrado, J. J.; Molero-Olias, A. I.; Corral, M. J.; Santarem, N.; Baptista, C.; Severi, L.; et al. Discovery of a Benzothiophene-Flavonol Halting Miltefosine and Antimonial Drug Resistance in Leishmania Parasites through the Application of Medicinal Chemistry, Screening and Genomics. Eur. J. Med. Chem. 2019, 183, 111676. DOI: 10.1016/j.ejmech.2019.111676.
  • Prada-Fernandez, C.; Sharma, M.; Plourde, M.; Bresson, E.; Roy, G.; Leprohon, P.; Ouellette, M. High-Throughput Cos-Seq Screen with Intracellular Leishmania Infantum for the Discovery of Novel Drug-Resistance Mechanisms. Int. J. Parasitol. Drugs Drug Resist. 2018, 8, 165–173. DOI: 10.1016/j.ijpddr.2018.03.004.
  • Goto, Y.; Coler, R. N.; Guderian, J.; Mohamath, R.; Reed, S. G. Cloning, Characterization, and Sero Diagnostic Evaluation of Leishmania infantum Tandem Repeat Proteins. Infect. Immun. 2006, 74, 3939–3945. DOI: 10.1128/IAI.00101-06.
  • Kerkhof, M. V.; Mabille, D.; Hendrickx, S.; Leprohon, P.; Mowbray, C. E.; Braillard, S.; Ouellette, M.; Maes, L.; Caljon, G. Antileishmanial Aminopyrazoles: Studies into Mechanisms and Stability of Experimental Drug Resistance. Antimicrob. Agents Chemother. 2020, 64, e00152-20. DOI: 10.1128/AAC.00152-20.
  • Paradela, L. S.; Wall, R. J.; Carvalho, S.; Chemi, G.; Lopez-Corpas, V.; Moynihan, E.; Bello, D.; Patterson, E.; Guther, M. L. S.; Fairlamb, A. H.; et al. Multiple Unbiased Approaches Identify Oxidosqualene Cyclase as the Molecular Target of a Promising anti-Leishmanial. Cell Chem. Biol. 2021, 28, 711–721.e8. DOI: 10.1016/j.chembiol.2021.02.008.
  • Unluer, D.; Unver, Y.; Bektas, E.; Direkal, S.; Karaman, M.; Karaman, H. S. Synthesis Biological Activities and Molecular Docking Studies of New Schiff Bases Derivatives. Gümüshane Univ. J. Sci. Technol. 2020, 10, 681–694. DOI: 10.17714/gumusfenbil.679313.
  • Algso, M. A. S.; Kivrak, A.; Konus, M.; Yilmaz, C.; Kurt-Kizildoğan, A. Synthesis and Biological Evaluation of Novel Benzothiophene Derivatives. J. Chem. Sci. 2018, 130, 119. DOI: 10.1007/s12039-018-1523-3.
  • Bootwala, S. Z. A. Comparative Studies of Cu(II) and Zn(II) Complexes with Ethyl 2-(4-Oxo-2-Phenyl-1,3-Thiazolidin-3-yl)-4,5,6,7-Tetrahydro-1-Benzothiophene-3-Carboxylate: Synthesis, Spectroscopic Characterization and Thermal Study. J. Interdiscipl. Cycle Res. 2020, 12, 6–15.
  • Cindric, M.; Jambon, S.; Harej, A.; Depauw, S.; Cordonnier-David, M.-H.; Pavelic, S. K.; Zamola-Karminski, G.; Hranjec, M. Novel Amidino Substituted Benzimidazole and Benzothiazole Benzo[b]Thieno-2-Carboxamides Exert Strong Antiproliferative and DNA Binding Properties. Eur. J. Med. Chem. 2017, 136, 468–479. DOI: 10.1016/j.ejmech.2017.05.014.
  • Saito, Y.; Taniguchi, Y.; Hirazawa, S.; Miura, Y.; Tsurimoto, H.; Nakayoshi, T.; Oda, A.; Hamel, E.; Yamashita, K.; Goto, M.; Goto-Nakagawa, K. Effects of Substituent Pattern on the Intracellular Target of Antiproliferative Benzo[b]Thiophenyl Chromone Derivatives. Eur. J. Med. Chem. 2021, 222, 113578. DOI: 10.1016/j.ejmech.2021.113578.
  • Miligy-El, M. M. M.; Hazzaa, A. A.; Messmary-El, H.; Nassra, R. A.; Hawash-El, S. A. M. New Hybrid Molecules Combining Benzothiophene or Benzofuran with Rhodanine as Dual COX-1/2 and 5-LOX Inhibitors: Synthesis, Biological Evaluation and Docking Study. Bioorg. Chem. 2017, 72, 102–115. DOI: 10.1016/j.bioorg.2017.03.012.
  • Konstantinovic, J.; Videnovic, M.; Srbljanovic, J.; Djakovic-Djurkovic, O.; Bogojevic, K.; Sciotti, R.; Solaja, B. Antimalarials with Benzothiophene Moieties as Aminoquinoline Partners. Molecules 2017, 22, 343. DOI: 10.3390/molecules22030343.
  • Theochari, I.; Papadimitriou, V.; Papahatjis, D.; Assimomytis, N.; Pappou, E.; Pratsinis, H.; Xenakis, A.; Pletsa, V. Oil-In-Water Microemulsions as Hosts for Benzothiophene-Based Cytotoxic Compounds: An Effective Combination. Biomimetics 2018, 3, 13. DOI: 10.3390/biomimetics/3020013.
  • Jones, C. D.; Jevnikar, M. G.; Pike, A. J.; Peters, M. K.; Black, L. J.; Thompson, A. R.; Falcone, J. F.; Clemens, J. A. Antiestrogens. 2.1 Structure-Activity Studies in a Series of 3-Aroyl-2-Arylbenzo[b] Thiophene Derivatives Leading to [6-Hydroxy-2-(4-Hydroxyphenyl) Benzo[b]Thiophen-3-yl][4-[2-(l-Piperidinyl)Ethoxy]Phenyl]Methanone Hydrochloride (LY156758), a Remarkably Effective Estrogen Antagonist with Only Minimal Intrinsic Estrogenicity. J. Med. Chem. 1984, 27, 1057–1066. DOI: 10.1021/jm00374a021.
  • Singh, S. A Short Review: Chemistry of Thioisatin and Its Derivatives. Indian J. Chem. 2021, 60B, 446–455.
  • George, J.; Singh, S.; Joshi, R.; Pardasani, P.; Pardasani, R. T. Synthetic and Theoretical Approach Towards Spirothiazolidinone Systems. Heterocycles 2013, 87, 591–598. DOI: 10.3987/COM-12-12651.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.