135
Views
0
CrossRef citations to date
0
Altmetric
Research articles

New fluorinated cyclophosphazenes: synthesis, properties, applications

ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 321-329 | Received 16 Jun 2022, Accepted 12 Nov 2022, Published online: 06 Dec 2022

References

  • Chandrasekhar, V.; Krishnan, V. Advances in the Chemistry of Chlorocyclophosphazenes. Adv. Inorg. Chem. 2002, 53, 159–211. DOI: 10.1016/s0898-8838(02)53005-1.
  • Uslu, A.; Yeşilot, S. Recent Advances in the Supramolecular Assembly of Cyclophosphazene Derivatives. Dalton Trans. 2021, 50, 2324–2341. DOI: 10.1039/d0dt04095a.
  • Fincham, J. K.; Parkes, H. G.; Shaw, L. S.; Shaw, R. A.; Hursthous, M. B. Phosphorus–Nitrogen Compounds. Part 54. The Reactions of Geminal N3P3(NH2)2Cl4 and of N3P3. (NH2)Cl5 with Alkoxide Ions in Alcohols. The Geminal ≡P(NH2)2 to Non-Geminal ≡P(NH2)(OR) Rearrangement. The Crystal Structures of trans-N3P3. (NH2)2(OPrn)4, Cis-N3P3(NH2)2. (OMe)4, and Geminal N3P3(NH2)2(OMe)4. J. Chem. Soc. Dalton Trans. 1988, 1169–1178. DOI: 10.1039/DT9880001169.
  • Çiftçi, G. Y.; Şenkuytu, E.; Yuksel, F.; Kiliç, A. Investigation of the Structural Properties of 2-Naphthylamine Substituted Cyclotetraphosphazenes. Polyhedron 2014, 77, 1–9. DOI: 10.1016/j.poly.2014.03.062.
  • Yurtdaş-Kırımlıoğlu, G.; Süzen-Demircioğlu, Y.; Berkman, M. S.; Metinoğlu-Örüm, S.; Altun, E. Synthesis, Spectroscopic, Thermal Properties, In Vitro Release, and Stability Studies of Ibuprofen-Loaded Microspheres Cross-Linked with Hexachlorocyclotriphosphazene/Octachlorocyclotetraphosphazene. Polym. Bull. 2021, 78, 6221–6250. DOI: 10.1007/s00289-020-03422-x.
  • Liu, J.; Tang, J.; Wang, X.; Wu, D. Synthesis, Characterization and Curing Properties of a Novel Cyclolinear Phosphazene-Based Epoxy Resin for Halogen-Free Flame Retardancy and High Performance. RSC Adv. 2012, 2, 5789–5799. DOI: 10.1039/c2ra20739g.
  • Allcock, H. R.; Hartle, T. J.; Taylor, J. P.; Sunderland, N. J. Organic Polymers with Cyclophosphazene Side Groups: Influence of the Phosphazene on Physical Properties and Thermolysis. Macromolecules 2001, 34, 3896–3904. DOI: 10.1021/ma001735r.
  • Allcock, H. R. Polymerization of Cyclic Phosphazenes. Polymer (Guildf.) 1980, 21, 673–683. DOI: 10.1016/0032-3861(80)90327-4.
  • Andrianov, A. K.; Marin, A.; Chen, J. Synthesis, Properties, and Biological Activity of Poly[Di(Sodium Carboxylatoethylphenoxy)Phosphazene]. Biomacromolecules 2006, 7, 394–399. DOI: 10.1021/bm050790a.
  • Andrianov, A. K.; Marin, A.; Fuerst, T. R. Self-Assembly of Polyphosphazene Immunoadjuvant with Poly(Ethylene Oxide) Enables Advanced Nanoscale Delivery Modalities and Regulated Ph-Dependent Cellular Membrane Activity. Heliyon 2016, 2, e00102. DOI: 10.1016/j.heliyon.2016.e00102.
  • Peterson, E. S.; Stone, M. L. Helium Separation Properties of Phosphazene Polymer Membranes. J. Memb. Sci. 1994, 86, 57–65. DOI: 10.1016/0376-7388(93)E0143-8.
  • Liu, R.; Wang, X. Synthesis, Characterization, Thermal Properties and Flame Retardancy of a Novel Nonflammable Phosphazene-Based Epoxy Resin. Polym. Degrad. Stab. 2009, 94, 617–624. DOI: 10.1016/j.polymdegradstab.2009.01.008.
  • Denq, B. L.; Hu, Y. S.; Chen, L. W.; Chiu, W. Y.; Wu, T. R. The Curing Reaction and Physical Properties of DGEBA/DETA Epoxy Resin Blended with Propyl Ester Phosphazene. J. Appl. Polym. Sci. 1999, 74, 229–237. DOI: 10.1002/(SICI)1097-4628(19991003)74:1 < 229::AID-APP28 > 3.0.CO;2-C.
  • Li, Z.; Du, L. Synthesis of Fluorocyclotriphosphazene Derivatives and Their Fire-Retardant Finishing on Cotton Fabrics. Int. J. Polym. Sci. 2010, 2010. DOI: 10.1155/2010/867825.
  • Gleria, M.; Bertani, R.; Jaeger, R.; De; Lora, S. Fluorine Containing Phosphazene Polymers. J. Fluor. Chem. 2004, 125, 329–337. DOI: 10.1016/j.jfluchem.2003.07.015.
  • Allcock, H. R. The Expanding Field of Polyphosphazene High Polymers. Dalton Trans. 2016, 45, 1856–1862. DOI: 10.1039/C5DT03887A.
  • Beşli, S.; Coles, S. J.; Davies, D. B.; Eaton, R. J.; Kiliç, A.; Shaw, R. A. Competitive Formation of Spiro and Ansa Derivatives in the Reactions of Tetrafluorobutane-1,4-Diol with Hexachlorocyclotriphosphazene: A Comparison with Butane-1,4-Diol. Polyhedron 2006, 25, 963–974. DOI: 10.1016/j.poly.2005.10.027.
  • Xu, M. J.; Xu, G. R.; Leng, Y.; Li, B. Synthesis of a Novel Flame Retardant Based on Cyclotriphosphazene and DOPO Groups and Its Application in Epoxy Resins. Polym. Degrad. Stab. 2016, 123, 105–114. DOI: 10.1016/j.polymdegradstab.2015.11.018.
  • Wei, W.; Huang, X.; Zhao, X.; Zhang, P.; Tang, X. A Rapid and Efficient Strategy for Preparation of Super-Hydrophobic Surface with Cross-Linked Cyclotriphosphazene/6F-Bisphenol A Copolymer Microspheres. Chem. Commun. (Camb.) 2010, 46, 487–489. DOI: 10.1039/b917137a.
  • Liubimtsev, N.; Deniz, A.; Elmanovich, I. V.; Gallyamov, M.; Pich, A. Morphology and Properties of Flame Retardant Superhydrophobic Polymer Coatings Deposited on Cotton Fabrics from Supercritical СО2. ACS Appl. Polym. Mater. 2020, 2, 2919–2926. DOI: 10.1021/acsapm.0c00421.
  • Steely, L. B.; Li, Q.; Badding, J. V.; Allcock, H. R. Foam Formation From Fluorinated Polyphosphazenes by Liquid CO2 Processing Lee. Engineering 2007, 47, 21–25. DOI: 10.1002/pen.
  • Fried, J. R.; Hu, N. The Molecular Basis of CO2 Interaction with Polymers Containing Fluorinated Groups: Computational Chemistry of Model Compounds and Molecular Simulation of Poly [Bis(2,2,2-Trifluoroethoxy)Phosphazene]. Polymer (Guildf.) 2003, 44, 4363–4372. DOI: 10.1016/S0032-3861(03)00285-4.
  • Fontenot, K. R.; Easson, M. W.; Smith, J.; Madison, C.; Nam, S.; Nguyen, T. D.; Chang, S.; Condon, B. D. Application of a Phosphazene Derivative as a Flame Retardant for Cotton Fabric Using Conventional Method and Supercritical CO2. AATCC J. Res. 2014, 1, 16–26. DOI: 10.14504/ajr.1.6.3.
  • McHugh, M. A.; Garach-Domech, A.; Park, I.-H.; Li, D.; Barbu, E.; Graham, P.; Tsibouklis, J. Impact of Fluorination and Side-Chain Length on Poly(Methylpropenoxyalkylsiloxane) and Poly(Alkyl Methacrylate) Solubility in Supercritical Carbon Dioxide. Macromolecules 2002, 35, 6479–6482. DOI: 10.1021/ja01848a068.
  • Girard, E.; Tassaing, T.; Marty, J. D.; Destarac, M. Structure-Property Relationships in CO2-Philic (Co)Polymers: Phase Behavior, Self-Assembly, and Stabilization of Water/CO2 Emulsions. Chem. Rev. 2016, 116, 4125–4169. DOI: 10.1021/acs.chemrev.5b00420.
  • Zefirov, V. V.; Lubimtsev, N. A.; Stakhanov, A. I.; Elmanovich, I. V.; Kondratenko, M. S.; Lokshin, B. V.; Gallyamov, M. O.; Khokhlov, A. R. Durable Crosslinked Omniphobic Coatings on Textiles via Supercritical Carbon Dioxide Deposition. J. Supercrit. Fluids 2018, 133, 30–37. DOI: 10.1016/j.supflu.2017.09.020.
  • Kazaryan, P. S.; Tyutyunov, A. A.; Kondratenko, M. S.; Elmanovich, I. V.; Stakhanov, A. I.; Zefirov, V. V.; Gallyamov, M. O.; Blagodatskikh, I. V.; Khokhlov, A. R. Superhydrophobic Coatings on Textiles Based on Novel Poly(Perfluoro-Tert-Hexylbutyl Methacrylate-Co-Hydroxyethyl Methacrylate) Copolymer Deposited from Solutions in Supercritical Carbon Dioxide. J. Supercrit. Fluids 2019, 149, 34–41. DOI: 10.1016/j.supflu.2019.03.018.
  • Kazaryan, P. S.; Zefirov, V. V.; El’manovich, I. V.; Stakhanov, A. I.; Kondratenko, M. S.; Khokhlov, A. R. Omniphobic Coatings Based on Vinyl Pivalate–Perfluorohexylethyl Methacrylate Copolymers Formed in Supercritical Carbon Dioxide. Polym. Sci. Ser. A 2019, 61, 157–161. DOI: 10.1134/S0965545X19020056.
  • Zahid, M.; Mazzon, G.; Athanassiou, A.; Bayer, I. S. Environmentally Benign Non-Wettable Textile Treatments: A Review of Recent State-of-the-Art. Adv. Colloid Interface Sci. 2019, 270, 216–250. DOI: 10.1016/j.cis.2019.06.001.
  • Rhili, K.; Chergui, S.; Eldouhaibi, A. S.; Siaj, M. Hexachlorocyclotriphosphazene Functionalized Graphene Oxide as a Highly Efficient Flame Retardant. ACS Omega 2021, 6, 6252–6260. DOI: 10.1021/acsomega.0c05815.
  • Al-Rubaie, A. Z.; Kadhim, Z. N.; Al-Luaibi, M. Y.; Sabri, L. Synthesis and Study of Some New Tricyclocphosphazene Containing Organosulfur and -Selenium Compounds as Fire Retardants Synthesis and Study of Some New Tricyclocphosphazene Containing Organo- Sulfur and -Selenium Compounds as Fire Retardants. J. Mater. Environ. Sci. 2015, 6, 1305–1309.
  • Mawson, S.; Johnston, K. P.; Combes, J. J. R.; Desimones, J. M.; Hill, C.; Carolina, N. Formation of Poly (1,1,2,2-Tetrahydroperfluorodecyl Acrylate) Submicron Fibers and Particles from Supercritical Carbon Dioxide Solutions. Macromolecules 1995, 28, 3182–3191. DOI: 10.1021/ma00113a021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.