331
Views
0
CrossRef citations to date
0
Altmetric
Research articles

Design, synthesis and molecular docking studies of 5-fluoro 1-aryl/alkyl sulfonyl benzimidazole derivatives for treatment of Parkinson’s disease

, ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 336-344 | Received 01 Aug 2022, Accepted 19 Nov 2022, Published online: 06 Dec 2022

References

  • Pathare, B.; Bansode, T. Review – Biological Active Benzimidazole Derivatives. Results Chem. 2021, 3, 100200. DOI: 10.1016/j.rechem.2021.100200.
  • Briguglio, I.; Piras, S.; Corona, P.; Gavini, E.; Nieddu, M.; Boatto, G.; Carta, A. Benzotriazole: An Overview on its Versatile Biological Behavior. Eur. J. Med. Chem. 2015, 97, 612–648. DOI: 10.1016/j.ejmech.2014.09.089.
  • Yadav, S.; Narasimhan, B.; Kaur, H. Perspectives of Benzimidazole Derivatives as Anticancer Agents in the New Era. Anticancer Agents Med. Chem. 2016, 16, 1403–1425. DOI: 10.2174/1871520616666151103113412.
  • Kanwal, A.; Ahmad, M.; Aslam, S.; Naqvi, S. A. R.; Saif, M. J. Recent Advances in Antiviral Benzimidazole Derivatives: A Mini Review. Pharm. Chem. J. 2019, 53, 179–187. DOI: 10.1007/s11094-019-01976-3.
  • Nakano, H.; Inoue, T.; Kawasaki, N.; Miyataka, H.; Matsumoto, H.; Taguchi, T.; Inagaki, N.; Nagai, H.; Satoh, T. Synthesis of Benzimidazole Derivatives as Antiallergic Agents with 5-Lipoxygenase Inhibiting Action. Chem. Pharm. Bull. (Tokyo) 1999, 47, 1573–1578. DOI: 10.1248/cpb.47.1573.
  • Shakhidoyatov, K.; Dzhumatanova, T.; Yakubov, U.; Mamadrahimov, A.; Berdimbetova, G. N-Monobenzoylation (Acetylation, Arylsulfonation), N-, C-Di- and N-, C-, O-Tribenzoylation of 5H(Chloro, Nitro)-2-Methyl(Ethyl)Benzimidazoles. ACS J. 2015, 6, 192–204. DOI: 10.9734/ACSJ/2015/15935.
  • Maton, P. N.; Burton, M. E. Antacids Revisited: A Review of Their Clinical Pharmacology and Recommended Therapeutic Use. Drugs 1999, 57, 855–870. DOI: 10.2165/00003495-199957060-00003.
  • Walag, A. M. P.; Ahmed, O.; Jeevanandam, J.; Akram, M.; Ephraim-Emmanuel, B. C.; Egbuna, C.; et al. Health Benefits of Organosulfur Compounds. In Functional Foods and Nutraceuticals, Springer: Cham, 2020; pp 445–472. DOI: 10.1007/978-3-030-42319-3_21.
  • Osipova, V.; Polovinkina, M.; Gracheva, Y.; Shpakovsky, D.; Osipova, A.; Berberova, N. Antioxidant Activity of Some Organosulfur Compounds In Vitro. Arab. J. Chem. 2021, 14, 103068. DOI: 10.1016/j.arabjc.2021.103068.
  • Hiyasat, B.; Sabha, D.; Grotzinger, K.; Kempfert, J.; Rauwald, J.-W.; Mohr, F.-W.; Dhein, S. Antiplatelet Activity of Allium Ursinum and Allium Sativum. Pharmacology 2009, 83, 197–204. DOI: 10.1159/000196811.
  • Schäfer, G.; Kaschula, C. The Immunomodulation and Anti-Inflammatory Effects of Garlic Organosulfur Compounds in Cancer Chemoprevention. Anticancer Agents Med. Chem. 2014, 14, 233–240. DOI: 10.2174/18715206113136660370.
  • Goncharov, N. V.; Belinskaia, D. A.; Ukolov, A. I.; Jenkins, R. O.; Avdonin, P. V. Organosulfur Compounds as Nutraceuticals. Nutraceuticals. 2021:911–924. DOI: 10.1016/B978-0-12-821038-3.00054-9.
  • Moriguchi, T.; Saito, H.; Nishiyama, N. Anti-Ageing Effect of Aged Garlic Extract in the Inbred Brain Atrophy Mouse Model. Clin. Exp. Pharmacol. Physiol. 1997, 24, 235–242. DOI: 10.1111/j.1440-1681.1997.tb01813.x.
  • Lee, D. Y.; Li, H.; Lim, H. J.; Lee, H. J.; Jeon, R.; Ryu, J. H. Anti-Inflammatory Activity of Sulfur-Containing Compounds from Garlic. J. Med. Food 2012, 15, 992–999. DOI: 10.1089/jmf.2012.2275.
  • Rouf, R.; Uddin, S. J.; Sarker, D. K.; Islam, M. T.; Ali, E. S.; Shilpi, J. A.; Nahar, L.; Tiralongo, E.; Sarker, S. D. Antiviral Potential of Garlic (Allium Sativum) and its Organosulfur Compounds: A Systematic Update of Pre-Clinical and Clinical Data. Trends Food Sci. Technol. 2020, 104, 219–234. DOI: 10.1016/j.tifs.2020.08.006.
  • Bhatwalkar, S. B.; Mondal, R.; Krishna, S. B. N.; Adam, J. K.; Govender, P.; Anupam, R. Antibacterial Properties of Organosulfur Compounds of Garlic (Allium Sativum). Front. Microbiol. 2021, 12, 613077. DOI: 10.3389/fmicb.2021.613077.
  • Doroschak, K.; Zhang, K.; Queen, M.; Mandyam, A.; Strauss, K.; Ceze, L.; Nivala, J. Rapid and Robust Assembly and Decoding of Molecular Tags with DNA-Based Nanopore Signatures. Nat. Commun. 2020, 11, 5454. DOI: 10.1038/s41467-020-19151-8.
  • Torre-Bustamante, M. M.; Casabon-Pastrana, J. F.; Largo-Cordoba, D. A.; Gomajoa-Guerrero, D. A.; Ortega-Sierra, M. G. Surgery of Oncologic Surgical Pathologies during the COVID-19 Pandemic: The Ordeal of the Oncologic Patient. Int. J. Oncol. 2022, 5. DOI: 10.23937/2643-4563/1710039.
  • Inoue, M.; Sumii, Y.; Shibata, N. Contribution of Organofluorine Compounds to Pharmaceuticals. ACS Omega 2020, 5, 10633–10640. DOI: 10.1021/acsomega.0c00830.
  • Baldessarini, R. J.; Vázquez, G. H.; Tondo, L. Bipolar Depression: A Major Unsolved Challenge. Int. J. Bipolar Disord. 2020, 8, 1. DOI: 10.1186/s40345-019-0160-1.
  • Chiang, C. C.; Schwedt, T. J. Calcitonin Gene-Related Peptide (CGRP)-Targeted Therapies as Preventive and Acute Treatments for Migraine—The Monoclonal Antibodies and Gepants. Prog. Brain Res. 2020, 255, 143–170. DOI: 10.1016/bs.pbr.2020.06.019.
  • Gnanaraj, C.; Sekar, M.; Fuloria, S.; Swain, S. S.; Gan, S. H.; Chidambaram, K.; Rani, N. N. I. M.; Balan, T.; Stephenie, S.; Lum, P. T.; et al. In Silico Molecular Docking Analysis of Karanjin Against Alzheimer’s and Parkinson’s Diseases as a Potential Natural Lead Molecule for New Drug Design, Development and Therapy. Molecules 2022, 27, 2834. DOI: 10.3390/molecules27092834.
  • Klemann, C. J. H. M.; Martens, G. J. M.; Sharma, M.; Martens, M. B.; Isacson, O.; Gasser, T.; Visser, J. E.; Poelmans, G. Integrated Molecular Landscape of Parkinson’s Disease. NPJ Parkinsons Dis. 2017, 3, 14. DOI: 10.1038/s41531-017-0015-3.
  • Twelves, D.; Perkins, K. S. M.; Counsell, C. Systematic Review of Incidence Studies of Parkinson’s Disease. Mov. Disord. 2003, 18, 19–31. DOI: 10.1002/mds.10305.
  • Dorsey, E. R.; Constantinescu, R.; Thompson, J. P.; Biglan, K. M.; Holloway, R. G.; Kieburtz, K.; Marshall, F. J.; Ravina, B. M.; Schifitto, G.; Siderowf, A.; et al. Projected Number of People with Parkinson Disease in the Most Populous Nations, 2005 Through 2030. Neurology 2007, 68, 384–386. DOI: 10.1212/01.wnl.0000247740.47667.03.
  • Calabresi, P.; Filippo, M. D.; Ghiglieri, V.; Tambasco, N.; Picconi, B. Levodopa-Induced Dyskinesias in Patients with Parkinson’s Disease: Filling the Bench-to-Bedside Gap. Lancet Neurol. 2010, 9, 1106–1117. DOI: 10.1016/S1474-4422(10)70218-0.
  • Diaz, N. L.; Waters, C. H. Current Strategies in the Treatment of Parkinson’s Disease and a Personalized Approach to Management. Expert. Rev. Neurother. 2009, 9, 1781–1789. DOI: 10.1586/ern.09.117.
  • Murakami, H.; Shiraishi, T.; Umehara, T.; Omoto, S.; Iguchi, Y. Recent Advances in Drug Therapy for Parkinson’s Disease. Intern. Med. (Published Online) 2022, 8940–8921. DOI: 10.2169/internalmedicine.8940-21.
  • Akhtar, W.; Khan, M. F.; Verma, G.; Shaquiquzzaman, M.; Rizvi, M. A.; Mehdi, S. H.; Akhter, M.; Alam, M. M. Therapeutic Evolution of Benzimidazole Derivatives in the Last Quinquennial Period. Eur. J. Med. Chem. 2017, 126, 705–753. DOI: 10.1016/j.ejmech.2016.12.010.
  • Alpan, A. S.; Parlar, S.; Carlino, L.; Tarikogullari, A. H.; Alptüzün, V.; Güneş, H. S. Synthesis, Biological Activity and Molecular Modeling Studies on 1H-Benzimidazole Derivatives as Acetylcholinesterase Inhibitors. Bioorg. Med. Chem. 2013, 21, 4928–4937. DOI: 10.1016/j.bmc.2013.06.065.
  • Zhu, J.; Wu, C.-F.; Li, X.; Wu, G.-S.; Xie, S.; Hu, Q.-N.; Deng, Z.; Zhu, M. X.; Luo, H.-R.; Hong, X.; et al. Synthesis, Biological Evaluation and Molecular Modeling of Substituted 2-Aminobenzimidazoles as Novel Inhibitors of Acetylcholinesterase and Butyrylcholinesterase. Bioorg. Med. Chem. 2013, 21, 4218–4224. DOI: 10.1016/j.bmc.2013.05.001.
  • Yoon, Y. K.; Ali, M. A.; Wei, A. C.; Choon, T. S.; Khaw, K.-Y.; Murugaiyah, V.; Osman, H.; Masand, V. H. Synthesis, Characterization, and Molecular Docking Analysis of Novel Benzimidazole Derivatives as Cholinesterase Inhibitors. Bioorg. Chem. 2013, 49, 33–39. DOI: 10.1016/j.bioorg.2013.06.008.
  • Anastassova, N.; Aluani, D.; Hristova-Avakumova, N.; Tzankova, V.; Kondeva-Burdina, M.; Rangelov, M.; Todorova, N.; Yancheva, D. Study on the Neuroprotective, Radical-Scavenging and MAO-B Inhibiting Properties of New Benzimidazole Arylhydrazones as Potential Multi-Target Drugs for the Treatment of Parkinson’s Disease. Antioxidants 2022, 11, 884. DOI: 10.3390/antiox11050884.
  • Gulcan, H. O.; Mavideniz, A.; Sahin, M. F.; Orhan, I. E. Benzimidazole-Derived Compounds Designed for Different Targets of Alzheimer’s Disease. Curr. Med. Chem. 2019, 26, 3260–3278. DOI: 10.2174/0929867326666190124123208.
  • Anastassova, N.; Aluani, D.; Kostadinov, A.; Rangelov, M.; Todorova, N.; Hristova-Avakumova, N.; Argirova, M.; Lumov, N.; Kondeva-Burdina, M.; Tzankova, V.; et al. Evaluation of the Combined Activity of Benzimidazole Arylhydrazones as New Anti-Parkinsonian Agents: Monoamine Oxidase-B Inhibition, Neuroprotection and Oxidative Stress Modulation. Neural. Regen. Res. 2021, 16, 2299–2309. DOI: 10.4103/1673-5374.309843.
  • Imran, M.; Shah, F. A.; Nadeem, H.; Zeb, A.; Faheem, M.; Naz, S.; Bukhari, A.; Ali, T.; Li, S. Synthesis and Biological Evaluation of Benzimidazole Derivatives as Potential Neuroprotective Agents in an Ethanol-Induced Rodent Model. ACS Chem. Neurosci. 2021, 12, 489–505. DOI: 10.1021/acschemneuro.0c00659.
  • Pinzi, L.; Rastelli, G. Molecular Docking: Shifting Paradigms in Drug Discovery. IJMS 2019, 20, 4331. DOI: 10.3390/ijms20184331.
  • Kumar Verma, S.; Verma, R.; Xue, F.; Kumar Thakur, P.; Girish, Y. R.; Rakesh, K. P. Antibacterial Activities of Sulfonyl or Sulfonamide Containing Heterocyclic Derivatives and its Structure–Activity Relationships (SAR) Studies: A Critical Review. Bioorg. Chem. 2020, 105, 104400. DOI: 10.1016/j.bioorg.2020.104400.
  • Peter, A. S. Comparative Study of 1,3-Dibromo-5,5-Dimethylhydantoin Assisted and Conventional Synthesis of Benzimidazole Derivatives and the Solvent Effects on Spectroscopic Properties. Afr. J. Pure Appl. Chem. 2015, 9, 197–203. DOI: 10.5897/AJPAC2015.0655.
  • Yu, B.; Zhang, H.; Zhao, Y.; Chen, S.; Xu, J.; Huang, C.; Liu, Z. Cyclization of O-Phenylenediamines by CO2 in the Presence of H 2 for the Synthesis of Benzimidazoles. Green Chem. 2013, 15, 95–99. DOI: 10.1039/C2GC36517K.
  • Taylor, N. J.; Emer, E.; Preshlock, S.; Schedler, M.; Tredwell, M.; Verhoog, S.; Mercier, J.; Genicot, C.; Gouverneur, V. Derisking the Cu-Mediated 18 F-Fluorination of Heterocyclic Positron Emission Tomography Radioligands. J. Am. Chem. Soc. 2017, 139, 8267–8276. DOI: 10.1021/jacs.7b03131.
  • Debnath, P.; Bhaumik, S.; Sen, D.; Muttineni, R. K.; Debnath, S. Identification of SARS‐CoV‐2 Main Protease Inhibitors Using Structure Based Virtual Screening and Molecular Dynamics Simulation of DrugBank Database. Chem. Select. 2021, 6, 4991–5013. DOI: 10.1002/slct.202100854.
  • Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings 1PII of Original Article: S0169-409X(96)00423-1. The Article Was Originally Published in Advanced Drug Delivery Reviews 23 (1997). Adv. Drug Deliv. Rev. 2001, 46, 3–26. DOI: 10.1016/S0169-409X(00)00129-0.
  • Suryavanshi, H.; Chaudhari, R. D.; Patil, V.; Majumdar, S.; Debnath, S.; Biswas, G. Design, Synthesis and Docking Study of Vortioxetine Derivatives as a SARS-CoV-2 Main Protease Inhibitor. Daru 2022, 30, 139–152. DOI: 10.1007/s40199-022-00441-z.
  • Isyaku, Y.; Uzairu, A.; Uba, S. Computational Studies of a Series of 2-Substituted Phenyl-2-Oxo-, 2-Hydroxyl- and 2-Acylloxyethylsulfonamides as Potent Anti-Fungal Agents. Heliyon 2020, 6, e03724. DOI: 10.1016/j.heliyon.2020.e03724.
  • Zhang, W.; Huang, M.; Zou, Z.; Wu, Z.; Ni, S.; Kong, L.; Zheng, Y.; Wang, Y.; Pan, Y. Redox-Active Benzimidazolium Sulfonamides as Cationic Thiolating Reagents for Reductive Cross-Coupling of Organic Halides. Chem. Sci. 2020, 12, 2509–2514. DOI: 10.1039/D0SC06446G.
  • Binda, C.; Hubálek, F.; Li, M.; Herzig, Y.; Sterling, J.; Edmondson, D. E.; Mattevi, A. Binding of Rasagiline-Related Inhibitors to Human Monoamine Oxidases: A Kinetic and Crystallographic Analysis. J. Med. Chem. 2005, 48, 8148–8154. DOI: 10.1021/jm0506266.
  • Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. DOI: 10.1002/jcc.21256.
  • O'Boyle, N. M.; Banck, M.; James, C. A.; Morley, C.; Vandermeersch, T.; Hutchison, G. R. Open Babel: An Open Chemical Toolbox. J. Cheminform. 2011, 3, 33. DOI: 10.1186/1758-2946-3-33.
  • Trott, O.; Olson, A. J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. (Published Online) 2009, NA–NA. DOI: 10.1002/jcc.21334.
  • Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. DOI: 10.1038/srep42717.
  • Sen, S.; Chowdhury, N.; Kim, T.-W.; Paul, M.; Debnath, D.; Jeon, S.; Bagchi, A.; Im, J.; Biswas, G. Anticancer, Antibacterial, Antioxidant, and DNA-Binding Study of Metal–Phenalenyl Complexes. Bioinorg. Chem. Appl. 2022, 2022, 1–15. DOI: 10.1155/2022/8453159.
  • Das, C.; Sen, S.; Singh, T.; Ghosh, T.; Paul, S. S.; Kim, T. W.; Jeon, S.; Maiti, D. K.; Im, J.; Biswas, G. Green Synthesis, Characterization and Application of Natural Product Coated Magnetite Nanoparticles for Wastewater Treatment. Nanomaterials 2020, 10, 1615. DOI: 10.3390/nano10081615.
  • Ghosh, N.; Sen, S.; Biswas, G.; Singh, L. R.; Chakdar, D.; Haldar, P. K. A Comparative Study of CuO Nanoparticle and CuO/PVA-PVP Nanocomposite on the Basis of Dye Removal Performance and Antibacterial Activity in Wastewater Treatment. J. Environ. Anal. Chem. 2022, 1–21. DOI: 10.1080/03067319.2022.2060088.
  • Shin, W.; Han, H. S.; Le, N. T. K.; Kang, K.; Jang, H. Antibacterial Nanoparticles: Enhanced Antibacterial Efficiency of Coral-like Crystalline Rhodium Nanoplates. RSC Adv. 2019, 9, 6241–6244. DOI: 10.1039/C9RA00214F.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.