79
Views
0
CrossRef citations to date
0
Altmetric
Research articles

Targeted application of GO to improve mechanical and thermal properties of PVCS/RS composites

ORCID Icon, , , &
Pages 345-353 | Received 22 Aug 2022, Accepted 19 Nov 2022, Published online: 01 Dec 2022

References

  • Rivers, M. The Global Tree Assessment–Red Listing the World’s Trees. BGjournal 2017, 14, 16–19.
  • Lambin, E. F.; Gibbs, H. K.; Heilmayr, R.; Carlson, K. M.; Fleck, L. C.; Garrett, R. D.; Le Polain de Waroux, Y.; McDermott, C. L.; McLaughlin, D.; Newton, P.; et al. The Role of Supply-Chain Initiatives in Reducing Deforestation. Nat. Clim. Change 2018, 8, 109–116. DOI: 10.1038/s41558-017-0061-1.
  • Jones, B. A. Tree Shade, Temperature, and Human Health: evidence from Invasive Species-Induced Deforestation. Ecol. Econ. 2019, 156, 12–23. DOI: 10.1016/j.ecolecon.2018.09.006.
  • Wolff, N. H.; Masuda, Y. J.; Meijaard, E.; Wells, J. A.; Game, E. T. Impacts of Tropical Deforestation on Local Temperature and Human Well-Being Perceptions. Global Environ. Change 2018, 52, 181–189. DOI: 10.1016/j.gloenvcha.2018.07.004.
  • MacDonald, A. J.; Mordecai, E. A. Amazon Deforestation Drives Malaria Transmission, and Malaria Burden Reduces Forest Clearing. Proc. Natl. Acad. Sci. USA 2019, 116, 22212–22218. DOI: 10.1073/pnas.1905315116.
  • Bauhoff, S.; Busch, J. Does Deforestation Increase Malaria Prevalence? Evidence from Satellite Data and Health Surveys. World Dev. 2020, 127, 104734. DOI: 10.1016/j.worlddev.2019.104734.
  • Barreto, A. C.; Junior, A. E.; Freitas, J. E.; Rosa, D. S.; Barcellos, W. M.; Freire, F. N.; Fechine, P. B.; Mazzetto, S. E. Biocomposites from Dwarf-Green Brazilian Coconut Impregnated with Cashew Nut Shell Liquid Resin. J. Compos. Mater. 2013, 47, 459–466. DOI: 10.1177/0021998312441041.
  • Lopez, Y. M.; Gonçalves, F. G.; Paes, J. B.; Gustave, D.; de Alcântara Segundinho, P. G.; de Figueiredo Latorraca, J. V.; Nantet, A. C.; Suuchi, M. A. Relationship between Internal Bond Properties and X-Ray Densitometry of Wood Plastic Composite. Compos. Part B 2021, 204, 108477. DOI: 10.1016/j.compositesb.2020.108477.
  • Rajan, R.; Näkki, J.; Layek, R.; Rainosalo, E. Wood Plastic Composites with Improved Electrical and Thermal Conductivity. Wood Sci. Technol. 2021, 55, 719–739. DOI: 10.1007/s00226-021-01275-9.
  • Zaafarani, N.; Nour, M.; El-Kassas, A. M. Validity of Using Single Extruder in Wood Plastic Composite from Rice Straw and High Impact Polystyrene Wastes. J. Eng. Res. 2020, 4, 31–35. DOI: 10.21608/erjeng.2020.131490.
  • Elamin, M. A. M.; Li, S. X.; Osman, Z. A.; Otitoju, T. A. Preparation and Characterization of Wood-Plastic Composite by Utilizing a Hybrid Compatibilizer System. Ind. Crops Prod. 2020, 154, 112659. DOI: 10.1016/j.indcrop.2020.112659.
  • Lopez, Y. M.; Gonçalves, F. G.; Paes, J. B.; Gustave, D.; Nantet, A. C.; Sales, T. J. Resistance of Wood Plastic Composite Produced by Compression to Termites Nasutitermes Corniger (Motsch.) and Cryptotermes Brevis (Walker). Int. Biodeterior. Biodegrad. 2020, 152, 104998. DOI: 10.1016/j.ibiod.2020.104998.
  • Alrubaie, M. A.; Lopez-Anido, R. A.; Gardner, D. J.; Tajvidi, M.; Han, Y. Experimental Investigation of the Hygrothermal Creep Strain of Wood–Plastic Composite Lumber Made from Thermally Modified Wood. J. Thermoplast. Compos. Mater. 2020, 33, 1248–1268. DOI: 10.1177/0892705718820398.
  • Lopez, Y. M.; Paes, J. B.; Gustave, D.; Goncalves, F. G.; Mendez, F. C.; Nantet, A. C. Production of Wood-Plastic Composites Using Cedrela Odorata Sawdust Waste and Recycled Thermoplastics Mixture from Post-Consumer products-A Sustainable Approach for Cleaner Production in Cuba. J. Cleaner Prod. 2020, 244, 118723. DOI: 10.1016/j.jclepro.2019.118723.
  • Bhaskar, K.; Jayabalakrishnan, D.; Kumar, M. V.; Sendilvelan, S.; Prabhahar, M. Analysis on Mechanical Properties of Wood Plastic Composite. Mater. Today Proc. 2021, 45, 5886–5891. DOI: 10.1016/j.matpr.2020.08.570.
  • Sauerbier, P.; Köhler, R.; Renner, G.; Militz, H. Surface Activation of Polylactic Acid-Based Wood-Plastic Composite by Atmospheric Pressure Plasma Treatment. Materials 2020, 13, 4673. DOI: 10.3390/ma13204673.
  • Shen, M.; Zeng, G.; Zhang, Y.; Wen, X.; Song, B.; Tang, W. Can Biotechnology Strategies Effectively Manage Environmental (Micro) Plastics? Sci. Total Environ. 2019, 697, 134200. DOI: 10.1016/j.scitotenv.2019.134200.
  • Shen, M.; Ye, S.; Zeng, G.; Zhang, Y.; Xing, L.; Tang, W.; Wen, X.; Liu, S. Can Microplastics Pose a Threat to Ocean Carbon Sequestration? Mar. Pollut. Bull. 2020, 150, 110712. DOI: 10.1016/j.marpolbul.2019.110712.
  • Kumar, S. Recent Developments of Biobased Plasticizers and Their Effect on Mechanical and Thermal Properties of Poly(Vinyl Chloride): A Review. Ind. Eng. Chem. Res. 2019, 58, 11659–11672. DOI: 10.1021/acs.iecr.9b02080.
  • Bagherinia, M. A.; Sheydaei, M.; Giahi, M. Graphene Oxide as a Compatibilizer for Polyvinyl Chloride/Rice Straw Composites. J. Polym. Eng. 2017, 37, 661–670. DOI: 10.1515/polyeng-2016-0249.
  • Tsiavos, A.; Sextos, A.; Stavridis, A.; Dietz, M.; Dihoru, L.; Alexander, N. A. Large-Scale Experimental Investigation of a Low-Cost PVC ‘Sand-Wich’(PVC-s) Seismic Isolation for Developing Countries. Earthquake Spectra 2020, 36, 1886–1911. DOI: 10.1177/8755293020935149.
  • Giacomucci, L.; Raddadi, N.; Soccio, M.; Lotti, N.; Fava, F. Polyvinyl Chloride Biodegradation by Pseudomonas citronellolis and Bacillus flexus. N. Biotechnol. 2019, 52, 35–41. DOI: 10.1016/j.nbt.2019.04.005.
  • Liu, Y.; Zhou, C.; Li, F.; Liu, H.; Yang, J. Stocks and Flows of Polyvinyl Chloride (PVC) in China: 1980-2050. Resour. Conserv. Recycl. 2020, 154, 104584. DOI: 10.1016/j.resconrec.2019.104584.
  • Wang, M. M.; Zhang, C. C.; Zhang, F. S. Recycling of Spent Lithium-Ion Battery with Polyvinyl Chloride by Mechanochemical Process. Waste Manag. 2017, 67, 232–239. DOI: 10.1016/j.wasman.2017.05.013.
  • Kobayashi, J.; Hori, M.; Kobayashi, N.; Itaya, Y.; Hatano, S.; Mori, S. Selective Dechlorination of Polyvinyl Chloride by Microwave Irradiation. J. Chem. Eng. Jpn. 2019, 52, 656–661. DOI: 10.1252/jcej.18we219.
  • Ma, D.; Liang, L.; Hu, E.; Chen, H.; Wang, D.; He, C.; Feng, Q. Dechlorination of Polyvinyl Chloride by Hydrothermal Treatment with Cupric Ion. Process. Saf. Environ. 2021, 146, 108–117. DOI: 10.1016/j.psep.2020.08.040.
  • Zhao, P.; Li, Z.; Li, T.; Yan, W.; Ge, S. The Study of Nickel Effect on the Hydrothermal Dechlorination of PVC. J. Cleaner Prod. 2017, 152, 38–46. DOI: 10.1016/j.jclepro.2017.03.101.
  • Li, T.; Zhao, P.; Lei, M.; Li, Z. Understanding Hydrothermal Dechlorination of PVC by Focusing on the Operating Conditions and Hydrochar Characteristics. Appl. Sci. 2017, 7, 256. DOI: 10.3390/app7030256.
  • Kusakabe, K.; Nagai, A.; Leong, W. H.; Yamasaka, K.; Nakaaki, T.; Uemura, Y.; Ikenaga, K. Dechlorination of Polyvinyl Chloride via Solvothermal Treatment with Glycerol. Processes 2022, 10, 2047. DOI: 10.3390/pr10102047.
  • Edraki, M.; Sheydaei, M.; Alinia-Ahandani, E.; Nezhadghaffar-Borhani, E. Polyvinyl Chloride: Chemical Modification and Investigation of Structural and Thermal Properties. J. Sulfur Chem. 2021, 42, 397–409. DOI: 10.1080/17415993.2021.1895996.
  • Sheydaei, M.; Talebi, S.; Salami-Kalajahi, M. Synthesis of Ethylene Dichloride-Based Polysulfide Polymers: investigation of Polymerization Yield and Effect of Sulfur Content on Solubility and Flexibility. J. Sulfur Chem. 2021, 42, 67–82. DOI: 10.1080/17415993.2020.1812610.
  • Hong, P.; Luo, Q.; Ruan, R.; Zhang, J.; Liu, Y. Structural Features of Lignin and Lignin-Carbohydrate Complexes from Bamboo (Phyllostachys pubescens Mazel). Bioresources 2014, 9, 1276–1289. DOI: 10.15376/biores.9.1.1276-1289.
  • Kumar, A. K.; Parikh, B. S.; Pravakar, M. Natural Deep Eutectic Solvent Mediated Pretreatment of Rice Straw: Bioanalytical Characterization of Lignin Extract and Enzymatic Hydrolysis of Pretreated Biomass Residue. Environ. Sci. Pollut. Res. Int. 2016, 23, 9265–9275. DOI: 10.1007/s11356-015-4780-4.
  • Bos, A. The UV Spectra of Cellulose and Some Model Compounds. J. Appl. Polym. Sci. 1972, 16, 2567–2576. DOI: 10.1002/app.1972.070161010.
  • Sheydaei, M.; Talebi, S.; Salami-Kalajahi, M. Synthesis, Characterization, Curing, Thermophysical and Mechanical Properties of Ethylene Dichloride-Based Polysulfide Polymers. J. Macromol. Sci. Part A Pure Appl. Chem. 2021, 58, 344–352. DOI: 10.1080/10601325.2020.1857267.
  • Ahmad, I.; Jabeen, N.; Ahmad, W. Fabrication and Characterization of Boron Carbide/Polymethyl Methacrylate Composites. Fuller. Nanotub. Carbon Nanostruct. 2022, 30, 727–734. DOI: 10.1080/1536383X.2021.2016709.
  • Bhattacharyya, P.; Bhaduri, D.; Adak, T.; Munda, S.; Satapathy, B. S.; Dash, P. K.; Padhy, S. R.; Pattanayak, A.; Routray, S.; Chakraborti, M.; et al. Characterization of Rice Straw from Major Cultivars for Best Alternative Industrial Uses to Cutoff the Menace of Straw Burning. Ind. Crops Prod. 2020, 143, 111919. DOI: 10.1016/j.indcrop.2019.111919.
  • Chen, X.; Yu, J.; Zhang, Z.; Lu, C. Study on Structure and Thermal Stability Properties of Cellulose Fibers from Rice Straw. Carbohydr. Polym. 2011, 85, 245–250. DOI: 10.1016/j.carbpol.2011.02.022.
  • Hsu, T. C.; Guo, G. L.; Chen, W. H.; Hwang, W. S. Effect of Dilute Acid Pretreatment of Rice Straw on Structural Properties and Enzymatic Hydrolysis. Bioresour. Technol. 2010, 101, 4907–4913. DOI: 10.1016/j.biortech.2009.10.009.
  • Tsegaye, B.; Balomajumder, C.; Roy, P. Alkali Delignification and Bacillus sp. BMP01 Hydrolysis of Rice Straw for Enhancing Biofuel Yields. Bull. Natl. Res. Cent. 2019, 43, 1–10. DOI: 10.1186/s42269-019-0175-x.
  • Edraki, M.; Moghaddampour, I. M.; Alinia-Ahandani, E.; Banimahd Keivani, M.; Sheydaei, M. Ginger Intercalated Sodium Montmorillonite Nano Clay: Assembly, Characterization, and Investigation Antimicrobial Properties. Chem. Rev. Lett. 2021, 4, 120–129. DOI: 10.22034/crl.2021.273340.1103.
  • Lee, C. M.; Mittal, A.; Barnette, A. L.; Kafle, K.; Park, Y. B.; Shin, H.; Johnson, D. K.; Park, S.; Kim, S. H. Cellulose Polymorphism Study with Sum-Frequency-Generation (SFG) Vibration Spectroscopy: identification of Exocyclic CH2OH Conformation and Chain Orientation. Cellulose 2013, 20, 991–1000. DOI: 10.1007/s10570-013-9917-3.
  • Hamada, Y.; Yoshida, K.; Asai, R. I.; Hayase, S.; Nokami, T.; Izumi, S.; Itoh, T. A Possible Means of Realizing a Sacrifice-Free Three Component Separation of Lignocellulose from Wood Biomass Using an Amino Acid Ionic Liquid. Green Chem. 2013, 15, 1863–1868. DOI: 10.1039/c3gc40445e.
  • Li, F. H.; Hu, H. J.; Yao, R. S.; Wang, H.; Li, M. M. Structure and Saccharification of Rice Straw Pretreated with Microwave-Assisted Dilute Lye. Ind. Eng. Chem. Res. 2012, 51, 6270–6274. DOI: 10.1021/ie202547w.
  • Barreto, A. C.; Rosa, D. S.; Fechine, P. B.; Mazzetto, S. E. Properties of Sisal Fibers Treated by Alkali Solution and Their Application into Cardanol-Based Biocomposites. Compos. Part A 2011, 42, 492–500. DOI: 10.1016/j.compositesa.2011.01.008.
  • Esmeraldo, M. A.; Gomes, A. C.; Freitas, J. E.; Fechine, P. B.; Sombra, A. S.; Corradini, E.; Mele, G.; Maffezzoli, A.; Mazzetto, S. E. Dwarf-Green Coconut Fibers: A Versatile Natural Renewable Raw Bioresource. Treatment, Morphology, and Physicochemical Properties. Bioresources 2010, 5, 2478–2501.
  • Wang, M.; Zhou, D.; Wang, Y.; Wei, S.; Yang, W.; Kuang, M.; Ma, L.; Fang, D.; Xu, S.; Du, S. K. Bioethanol Production from Cotton Stalk: A Comparative Study of Various Pretreatments. Fuel 2016, 184, 527–532. DOI: 10.1016/j.fuel.2016.07.061.
  • Lai, L. W.; Idris, A. Comparison of Steam-Alkali-Chemical and Microwave-Alkali Pretreatment for Enhancing the Enzymatic Saccharification of Oil Palm Trunk. Renew. Energy 2016, 99, 738–746. DOI: 10.1016/j.renene.2016.07.059.
  • Mistry, B. D. A. Handbook of Spectroscopic Data Chemistry; Oxford Book Company: Jaipur, 2009.
  • Allahbakhsh, A.; Sharif, F.; Mazinani, S. The Influence of Oxygen Containing Functional Groups on the Surface Behavior and Roughness Characteristics of Graphene Oxide. Nano 2013, 08, 1350045. DOI: 10.1142/S1793292013500458.
  • Allahbakhsh, A.; Mazinani, S. Influences of Sodiumdodecyl Sulfate on Vulcanization Kinetics and Mechanical Performance of EPDM/Graphene Oxide Nanocomposites. RSC Adv. 2015, 5, 46694–46704. DOI: 10.1039/C5RA00394F.
  • Yan, J.; Zhao, Z.; Pan, L. Growth and Characterization of Graphene by Chemical Reduction of Graphene Oxide in Solution. Phys. Status Solidi A 2011, 208, 2335–2338. DOI: 10.1002/pssa.201084172.
  • Bunyaev, V. A.; Chernysheva, M. G.; Popov, A. G.; Grigorieva, A. V.; Badun, G. A. Comparison Analysis of Graphene Oxide Reduction Methods. Fuller. Nanotub. Carbon Nanostruct. 2020, 28, 191–195. DOI: 10.1080/1536383X.2019.1686619.
  • Khaleghi, M.; Didehban, K.; Shabanian, M. Effect of New Melamine-Terephthaldehyde Resin Modified Graphene Oxide on Thermal and Mechanical Properties of PVC. Polym. Test. 2017, 63, 382–391. DOI: 10.1016/j.polymertesting.2017.08.018.
  • Ekambaram, K.; Doraisamy, M. Study on the Fabrication, Characterization and Performance of PVDF/Calcium Stearate Composite Nanofiltration Membranes. Desalination 2016, 385, 24–38. DOI: 10.1016/j.desal.2016.01.029.
  • Kontoyannis, C. G.; Vagenas, N. V. Calcium Carbonate Phase Analysis Using XRD and FT-Raman Spectroscopy. Analyst 2000, 125, 251–255. DOI: 10.1039/a908609i.
  • Gonen, M.; Ozturk, S.; Balkose, D.; Okur, S.; Ulku, S. Preparation and Characterization of Calcium Stearate Powders and Films Prepared by Precipitation and Langmuir–Blodgett Techniques. Ind. Eng. Chem. Res. 2010, 49, 1732–1736. DOI: 10.1021/ie901437d.
  • Sun, G.; Ibach, R. E.; Faillace, M.; Gnatowski, M.; Glaeser, J. A.; Haight, J. Laboratory and Exterior Decay of Wood–Plastic Composite Boards: Voids Analysis and Computed Tomography. Wood Mater. Sci. Eng. 2017, 12, 263–278. DOI: 10.1080/17480272.2016.1164755.
  • Sheydaei, M.; Edraki, M.; Alinia-Ahandani, E.; Moradi Rufchahi, E. O.; Ghiasvandnia, P. Poly(p-Xylene Disulfide) and Poly(p-Xylene Tetrasulfide): Synthesis, Cure and Investigation of Mechanical and Thermophysical Properties. J. Macromol. Sci. Part A Pure Appl. Chem. 2021, 58, 52–58. DOI: 10.1080/10601325.2020.1821711.
  • Sheydaei, M.; Edraki, M.; Javanbakht, S.; Alinia-Ahandani, E.; Soleimani, M.; Zerafatkhah, A. Poly (Butylene Disulfide) and Poly (Butylene Tetrasulfide): Synthesis, Cure and Investigation of Polymerization Yield and Effect of Sulfur Content on Mechanical and Thermophysical Properties. Phosphorus Sulfur Silicon Relat. Elem. 2021, 196, 578–584. DOI: 10.1080/10426507.2021.1872076.
  • Sheydaei, M.; Edraki, M.; Alinia-Ahandani, E.; Nezhadghaffar-Borhani, E. Poly(Ethylene Disulfide)/Carbon Fiber Composites: cure and Effect of Fiber Content on Mechanical and Thermal Properties. J. Sulfur Chem. 2021, 42, 614–627. DOI: 10.1080/17415993.2021.1937627.
  • Deka, B. K.; Maji, T. K. Study on the Properties of Nanocomposite Based on High Density Polyethylene, Polypropylene, Polyvinyl Chloride and Wood. Compos. Part A 2011, 42, 686–693. DOI: 10.1016/j.compositesa.2011.02.009.
  • Allahbakhsh, A. PVC/Rice Straw/SDBS-Modified Graphene Oxide Sustainable Nanocomposites: Melt Mixing Process and Electrical Insulation Characteristics. Compos. Part A 2020, 134, 105902. DOI: 10.1016/j.compositesa.2020.105902.
  • Allahbakhsh, A.; Khodabadi, F. N.; Hosseini, F. S.; Haghighi, A. H. 3-Aminopropyl- Triethoxysilane-Functionalized Rice Husk and Rice Husk Ash Reinforced Polyamide 6/Graphene Oxide Sustainable Nanocomposites. Eur. Polym. J. 2017, 94, 417–430. DOI: 10.1016/j.eurpolymj.2017.07.031.
  • Sheydaei, M.; Pouraman, V.; Alinia-Ahandani, E.; Shahbazi-Ganjgah, S. PVCS/GO Nanocomposites: investigation of Thermophysical, Mechanical and Antimicrobial Properties. J. Sulfur. Chem. 2022, 43, 376–390. DOI: 10.1080/17415993.2022.2036151.
  • Chowdhary, A.; Sharma, C.; Meis, J. F. Azole-Resistant Aspergillosis: Epidemiology, Molecular Mechanisms, and Treatment. J. Infect. Dis. 2017, 216, S436–S444. DOI: 10.1093/infdis/jix210.
  • Choudhury, S. R.; Ghosh, M.; Goswami, A. Inhibitory Effects of Sulfur Nanoparticles on Membrane Lipids of Aspergillus niger: A Novel Route of Fungistasis. Curr. Microbiol. 2012, 65, 91–97. DOI: 10.1007/s00284-012-0130-7.
  • Choudhury, S. R.; Nair, K. K.; Kumar, R.; Gogoi, R.; Srivastava, C.; Gopal, M.; Subhramanyam, B. S.; Devakumar, C.; Goswami, A.; Giri, P. K.; et al. Nanosulfur: A Potent Fungicide against Food Pathogen, Aspergillus niger. AIP Conf. Proc. 2010, 1276, 154–157. DOI: 10.1063/1.3504287.
  • Choudhury, S. R.; Ghosh, M.; Mandal, A.; Chakravorty, D.; Pal, M.; Pradhan, S.; Goswami, A. Surface-Modified Sulfur Nanoparticles: An Effective Antifungal Agent against Aspergillus niger and Fusarium oxysporum. Appl. Microbiol. Biotechnol. 2011, 90, 733–743. DOI: 10.1007/s00253-011-3142-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.