179
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Spectral study of phosphonium salts synthesized from Michael acceptors

ORCID Icon &
Pages 354-365 | Received 24 Aug 2022, Accepted 14 Nov 2022, Published online: 01 Dec 2022

References

  • Sarda, S. R.; Jadhav, W. N.; Shete, A. S.; Dhopte, K. B.; Sadawarte, S. M.; Gadge, P. J.; Pawar, R. P. Phosphonium Ionic Liquid–Catalyzed Michael Addition of Mercaptans to α,β-Unsaturated Ketones. Synth. Commun. 2010, 40, 2178–2184. DOI:10.1080/00397910903221050.
  • Cao, D.; Fang, G.; Zhang, J.; Wang, H.; Zheng, C.; Zhao, G. Enantioselective Michael Addition of Malonates to Chalcone Derivatives Catalyzed by Dipeptide-Derived Multifunctional Phosphonium Salts. J. Org. Chem. 2016, 81, 9973–9982. DOI:10.1021/acs.joc.6b01752.
  • Zhang, H.; He, J.; Chen, Y.; Zhuang, C.; Jiang, C.; Xiao, K.; Su, Z.; Ren, X.; Wang, T. Regio- and Stereoselective Cascade of β,γ-Unsaturated Ketones by Dipeptided Phosphonium Salt Catalysis: Stereospecific Construction of Dihydrofuro-Fused [2,3-b] Skeletons. Angew. Chem. Int. Ed. Engl. 2021, 60, 19860–19870. DOI:10.1002/anie.202106046.
  • Hong, H.; Zheng, C.; Zhao, G.; Shang, Y. Enantioselective Michael Addition Reactions to Construct SCF3-Containing Stereocenter Catalyzed by Chiral Quaternary Phosphonium Salts. Adv. Synth. Catal. 2020, 362, 5765–5771. DOI:10.1002/adsc.202001026.
  • Das, P.; Mc Leod, D.; Mc Nulty, J. A Direct Synthesis of Functionalized Styrenes and Terminal 1,3-Dienes via Aqueous Wittig Chemistry with Formalin. Tetrahedron Lett. 2011, 52, 199–201. DOI:10.1016/j.tetlet.2010.10.090.
  • Ballmann, M.; Weber, F.; Sattler, L. E.; Hilt, G. Synthesis of Non-Conjugated Trienes via In Situ Hydrovinylation/Wittig Olefination of Unsaturated Phosphonium Salts. Synthesis 2018, 50, 1711–1720. DOI:10.1055/s-0036-1591878.
  • Bestman, H. J. New Reactions of Alkylidenephosphoranes and Their Preparative Uses III. Alkylidenephosphoranes and Reagents Containing Multiple Bonds. Angew. Chem. Int. Ed. Engl. 1965, 4, 830–838. DOI:10.1002/anie.196508301.
  • Su, H.; Wu, Y.; Zhang, Y.; Jiang, Y.; Ding, Y.; Wang, L.; Zhang, J. Enhancing the Long-Term Anti-Corrosion Property of Mg Alloy by Quaternary Phosphonium Salt: Integrated Experimental and Theoretical Approaches. Corros. Sci. 2021, 178, 109010. DOI:10.1016/j.corsci.2020.109010.
  • Palaniappan, N.; Chowha, L. R.; Joth, S.; Bosco, I. G.; Cole, I. S. Corrosion Inhibition on Mild Steel by Phosphonium Salts in 1 M HNO3 Aqueous Medium. Surf. Interfaces 2017, 6, 237–246. DOI:10.1016/j.surfin.2016.10.003.
  • Manetta, A.; Gamboa, G.; Nasseri, A.; Podnos, Y. D.; Emma, D.; Dorion, G.; Rawlings, L.; Carpenter, P. M.; Bustamante, A.; Patel, J.; Rideout, D. Novel Phosphonium Salts Display In Vitro and In Vivo Cytotoxic Activity against Human Ovarian Cancer Cell Lines. Gynecol. Oncol. 1996, 60, 203–212. DOI:10.1006/gyno.1996.0026.
  • Grinius, L. L.; Jasaitis, A. A.; Kadziauskas, Y. P.; Liberman, E. A.; Skulachev, V. P.; Topali, V. P.; Tsofina, L. M.; Vladimirova, M. A. Conversion of Biomembrane-Produced Energy into Electric Form. I. Submitochondrial Particles. Biochim. Biophys. Acta Bioenerg. 1970, 216, 1–12. DOI:10.1016/0005-2728(70)90153-2.
  • Dubois, R. J.; Lin, C.-C.; Beisler, J. A. Synthesis and Antitumor Properties of Some Isoindolylalkylphosphonium Salts. J. Med. Chem. 1978, 21, 303–306. DOI:10.1021/jm00201a016.
  • Bittner Fialová, S.; Kello, M.; Čoma, M.; Slobodníková, L.; Drobná, E.; Holková, I.; Garajová, M.; Mrva, M.; Zachar, V.; Lukáč, M. Derivatization of Rosmarinic Acid Enhances Its In Vitro Antitumor, Antimicrobial and Antiprotozoal Properties. Molecules 2019, 24, 1077–1088.1078. DOI:10.3390/molecules2406.
  • Jonnalagadda, S. K.; Wielenberg, K.; Ronayne, C. T.; Jonnalagadda, S.; Kiprof, P.; Jonnalagadda, S. C.; Mereddy, V. R. Synthesis and Biological Evaluation of Arylphosphonium-Benzoxaborole Conjugates as Novel Anticancer Agents. Bioorg. Med. Chem. Lett. 2020, 30, 127259. DOI:10.1016/j.bmcl.2020.127259.
  • Iksanova, A. G.; Gabbasova, R. R.; Kupriyanova, T. V.; Akhunzyanov, A. A.; Pugachev, M. V.; Vafiva, R. M.; Shtyrlin, N. V.; Balakin, K. V.; Shtyrlin, Y. G. In-Vitro Antitumor Activity of New Quaternary Phosphonium Salts, Derivatives of 3-Hydroxypyridine. Anticancer Drugs. 2018, 29, 682–690. DOI:10.1097/CAD.0000000000000642.
  • Bachowska, B.; Baranska, J. K.; Cieslak, M.; Nawrot, B.; Szczęsna, D.; Skalik, J.; Bałczewski, P. High Cytotoxic Activity of Phosphonium Salts and Their Complementary Selectivity towards HeLa and K562 Cancer Cells: Identification of Tri-n-Butyl-n-Hexadecylphosphonium Bromide as a Highly Potent anti-HeLa Phosphonium Salt. ChemistryOpen 2012, 1, 33–38. DOI:10.1002/open.201100003.
  • Khasiyatullina, N. R.; Mironov, V. F.; Gumerova, S. K.; Voloshina, A. D.; Nastasia, A.; Sapunova, S. Versatile Approach to Naphthoquinone Phosphonium Salts and Evaluation of Their Biological Activity. Mendeleev Commun. 2019, 29, 435–437. DOI:10.1016/j.mencom.2019.07.027.
  • Khasiyatullina, N. R.; Mironov, V. F.; Voloshina, A. D.; Sapunova, A. S. Synthesis and Antimicrobial Properties of Novel Phosphonium Salts Bearing 1,4-Dihydroxyaryl Fragment. Chem. Biodivers. 2019, 16, e1900039. DOI:10.1002/cbdv.201900039.
  • Romanov, G. V.; Pozdeev, O. K.; Gil´manova, G. K.; Ryzhikova, T. Y.; Semkina, E. P. Synthesis and Antiviral Activity of Phosphonium Salts. Pharm. Chem. J. 1990, 24, 414–417. DOI:10.1007/BF00765789.
  • Viala, J.; Santelli, M. Three-Carbon Homologating Agent: New Preparation of (3,3-Diisopropoxypropyl)Triphenylphosphonium Bromide. Synthesis 1988, 1988, 395–397. DOI:10.1055/s-1988-27589.
  • Moiseev, D. V.; James, B. R.; Gushchi, A. V. Reaction of [HO(CH2)3]3P with α,β-Unsaturated Ketones Containing a Phenylpropanoid Backbone. Phosphorus Sulfur Silicon Relat. Elem 2014, 189, 242–254. DOI:10.1080/10426507.2013.818997.
  • Moiseev, D. V.; James, B. R.; Gushchin, A. V. Lignin-Type, α,β-Unsaturated Aldehydes of Lignin-Type in Organic Solvents. Russ. J. Gen. Chem. 2012, 82, 840–847. DOI:10.1134/S1070363212050064.
  • Salin, A. V. Mechanistic Insights into Phospha–Michael Reaction of Tertiary Phosphines with Electron-Deficient Alkenes. Phosphorus Sulfur Silicon Relat. Elem 2016, 191, 1625–1627. DOI:10.1080/10426507.2016.1217222.
  • Moiseev, D. V.; Malysheva, Y. B.; Gushchin, A. V.; James, B. R. Reaction of Tris(Hydroxymethyl)Phosphine and Cinnamaldehyde in Methanol. J. Heterocyclic Chem. 2020, 57, 2769–2781. DOI:10.1002/jhet.3986.
  • Moiseev, D. V.; James, B. R.; Gushchin, A. V. NMR Spectroscopic Studies on the 1:1 Interaction of Tris(Hydroxymethyl)Phosphine with Cinnamic Acids. Eur. J. Inorg. Chem. 2014, 2014, 6275–6280. DOI:10.1002/ejic.201402889.
  • Il’in, A. V.; Fatkhutdinov, A. R.; Salin, A. V. Efficient Hydrophosphorylation of Activated Alkenes under Phosphine Catalysis. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 1628–1629. DOI:10.1080/10426507.2016.1223657.
  • Elleuch, H.; Ayadi, M.; Bouajila, J.; Rezgui, F. Synthesis of a Series of γ-Keto Allyl Phosphonates. J. Org. Chem. 2016, 81, 1757–1761. DOI:10.1021/acs.joc.5b02106.
  • Elleuch, H.; Baioui, N.; Bouajila, J.; Rezgui, F. Chemoselective Reaction of Ethane-1,2-Dithiol, Hydrazines, and Hydroxylamine onto γ-Keto Allyl Phosphonates and Phosphine Oxides. Arkivoc 2017, 2017, 265–272. DOI:10.24820/ark.5550190.p009.957.
  • Khasiyatullina, N. R.; Vazykhova, A. M.; Mironov, V. F.; Krivolapov, D. B.; Voronina, K. Y.; Voloshina, A. D.; Kulik, N. V.; Strobykina, A. S. Phosphonium Salts with a Dihydroxynaphthyl Substituent: versatile Synthesis and Evaluation of Antimicrobial Activity. Mendeleev Commun. 2017, 27, 134–136. DOI:10.1016/j.mencom.2017.03.008.
  • Chen, Y.; Tan, W.; Li, Q.; Dong, F.; Gu, G.; Guo, Z. Synthesis of Inulin Derivatives with Quaternary Phosphonium Salts and Their Antifungal Activity. Int. J. Biol. Macromol. 2018, 113, 1273–1278. DOI:10.1016/j.ijbiomac.2018.03.055.
  • Pugachev, M. V.; Shtyrlin, N. V.; Sysoeva, L. P.; Nikitina, E. V.; Abdullin, T. I.; Iksanova, A. G.; Ilaeva, A. A.; Musin, R. Z.; Berdnikov, E. A.; Shtyrlin, Y. G. Synthesis and Antibacterial Activity of Novel Phosphonium Salts on the Basis of Pyridoxine. Bioorg. Med. Chem. 2013, 21, 4388–4395. DOI:10.1016/j.bmc.2013.04.051.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.