236
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Nano SiO2 doping effect on physicochemical properties of PVA-starch bionanocomposite films

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 366-373 | Received 12 Sep 2022, Accepted 19 Nov 2022, Published online: 01 Dec 2022

References

  • Guzman-Puyol, S.; Benítez, J. J.; Heredia-Guerrero, J. A. Transparency of Polymeric Food Packaging Materials. Food Res. Int. 2022, 161, 111792. DOI: 10.1016/j.foodres.2022.111792.
  • Gökmen, F. Ö. PVP/PVA Blended Hydrogels as a Biofilm for Use in Food Packaging Applications. Food Health 2022, 8, 172–180. DOI: 10.3153/FH22017.
  • Sehar, S.; Sher, F.; Zhang, S.; Khalid, U.; Sulejmanović, J.; Lima, E. C. Thermodynamic and Kinetic Study of Synthesised Graphene Oxide-CuO Nanocomposites: A Way Forward to Fuel Additive and Photocatalytic Potentials. J. Mol. Liq. 2020, 313, 113494. DOI: 10.1016/j.molliq.2020.113494.
  • Jayakumar, A.; Heera, K. V.; Sumi, T. S.; Joseph, M.; Mathew, S.; Praveen, G.; Nair, I. C.; Radhakrishnan, E. K. International Journal of Biological Macromolecules Starch-PVA Composite Fi Lms with Zinc-Oxide Nanoparticles and Phytochemicals as Intelligent PH Sensing Wraps for Food Packaging Application. Int. J. Biol. Macromol. 2019, 136, 395–403. DOI: 10.1016/j.ijbiomac.2019.06.018.
  • Al-Tayyar, N. A.; Youssef, A. M.; Al-Hindi, R. R. Antimicrobial Packaging Efficiency of ZnO-SiO2 Nanocomposites Infused into PVA/CS Film for Enhancing the Shelf Life of Food Products. Food Packag. Shelf Life 2020, 25, 100523. DOI: 10.1016/j.fpsl.2020.100523.
  • Liu, C.; Hong, C. Y.; Pan, C. Y. Polymerization Techniques in Polymerization-Induced Self-Assembly (PISA). Polym. Chem. 2020, 11, 3673–3689. DOI: 10.1039/D0PY00455C.
  • Mousavi, A.; Mohammad, S.; Hashemi, B.; Limbo, S. Food and Bioproducts Processing Antimicrobial Agents and Packaging Systems in Antimicrobial Active Food Packaging : An Overview of Approaches and Interactions. Food Bioprod. Process 2018, 111, 1–19. DOI: 10.1016/j.fbp.2018.05.001.
  • El-Sayed, S. M.; El-Sayed, H. S.; Ibrahim, O. A.; Youssef, A. M. Rational Design of Chitosan/Guar Gum/Zinc Oxide Bionanocomposites Based on Roselle Calyx Extract for Ras Cheese Coating. Carbohydr. Polym. 2020, 239, 116234. DOI: 10.1016/j.carbpol.2020.116234.
  • Alvarez, V. A.; Guti, T. J. Bionanocomposite Films Developed from Corn Starch and Natural and Modified Nano-Clays with or without Added Blueberry Extract. Food Hydrocoll. 2018, 77, 407–420. DOI: 10.1016/j.foodhyd.2017.10.017.
  • Youssef, A. M.; Abdel-Aziz, M. E.; El-Sayed, E. S. A.; Abdel-Aziz, M. S.; Abd El-Hakim, A. A.; Kamel, S.; Turky, G. Morphological, Electrical & Antibacterial Properties of Trilayered Cs/PAA/PPy Bionanocomposites Hydrogel Based on Fe3O4-NPs. Carbohydr. Polym. 2018, 196, 483–493. DOI: 10.1016/j.carbpol.2018.05.065.
  • Limpan, N.; Prodpran, T.; Benjakul, S.; Prasarpran, S. In Fluences of Degree of Hydrolysis and Molecular Weight of Poly (Vinyl Alcohol) (PVA) on Properties of Fish Myofibrillar Protein/PVA Blend Films. Food Hydrocoll. 2012, 29, 226–233. DOI: 10.1016/j.foodhyd.2012.03.007.
  • Youssef, A. M.; Youssef, A. M. Polymer Nanocomposites as a New Trend for Packaging Applications Polymer Nanocomposites as a New Trend for Packaging Applications. Polym. Plast. Technol. Eng. 2013, 52:7, 635-660. DOI: 10.1080/03602559.2012.762673.
  • Yu, Z.; Li, B.; Chu, J.; Zhang, P. Silica in Situ Enhanced PVA/Chitosan Biodegradable Films for Food Packages. Carbohydr. Polym. 2018, 184, 214–220. DOI: 10.1016/j.carbpol.2017.12.043.
  • Cano, A.; Fortunati, E.; Cháfer, M.; Kenny, J. M.; Chiralt, A.; González-Martínez, C. Properties and Ageing Behaviour of Pea Starch Fi Lms as Affected by Blend with Poly (Vinyl Alcohol). Food Hydrocoll. 2015, 48, 84–93. DOI: 10.1016/j.foodhyd.2015.01.008.
  • Youssef, H. F.; El-Naggar, M. E.; Fouda, F. K.; Youssef, A. M. Antimicrobial Packaging Film Based on Biodegradable CMC/PVA-Zeolite Doped with Noble Metal Cations. Food Packag. Shelf Life 2019, 22, 100378. DOI: 10.1016/j.fpsl.2019.100378.
  • Castro López, M.; del M.; Dopico García, S.; Ares Pernas, A.; López Vilariño, J. M.; González Rodríguez, M. V. Effect of PPG-PEG-PPG on the Tocopherol-Controlled Release from Films Intended for Food-Packaging Applications. J. Agric. Food Chem. 2012, 60, 8163–8170. DOI: 10.1021/jf301442p.
  • Kuswandi, B.; Wicaksono, Y.; Abdullah, A.; Heng, L. Y.; Ahmad M.; Jayus  . Smart Packaging : Sensors for Monitoring of Food Quality and Sens. Instrumen. Food Qual. 2011, 5, 137–146. DOI: 10.1007/s11694-011-9120-x.
  • El-Wakil, N. A.; Hassan, E. A.; Abou-Zeid, R. E.; Dufresne, A. Development of Wheat Gluten/Nanocellulose/Titanium Dioxide Nanocomposites for Active Food Packaging. Carbohydr. Polym. 2015, 124, 337–346. DOI: 10.1016/j.carbpol.2015.01.076.
  • Arruda, Q. D.; Stefani, R.; Aniceto, V. P Jr; ; Nat, I. Active Chitosan/PVA Films with Anthocyanins from Brassica Oleraceae (Red Cabbage) as Time-Temperature Indicators for Application in Intelligent Food Packaging. Food Hydrocoll. 2015, 43, 180–188. DOI: 10.1016/j.foodhyd.2014.05.014.
  • Kim, M. J.; Jung, S. W.; Park, H. R.; Lee, S. J. Selection of an Optimum pH-Indicator for Developing Lactic Acid Bacteria-Based Time – Temperature Integrators (TTI). J. Food Eng. 2012, 113, 471–478. DOI: 10.1016/j.jfoodeng.2012.06.018.
  • Maciel, V. B.; V; Yoshida, C. M. P.; Franco, T. T. Development of a Prototype of a Colourimetric Temperature Indicator for Monitoring Food Quality. J. Food Eng. 2012, 111, 21–27. DOI: 10.1016/j.jfoodeng.2012.01.037.
  • Mccurdy-Alan, R. Novel Food Packaging Techniques. J. Food Process. Preserv. 2006, 30, 379–379. DOI: 10.1111/j.1745-4549.2006.00072.x.
  • Gadea, R.; Ángel, M.; Fuentes, F.; Pulido, R. P.; Gálvez, A.; Ortega, E. Adaptive Tolerance to Phenolic Biocides in Bacteria from Organic Foods : Effects on Antimicrobial Susceptibility and Tolerance to Physical Stresses. Food Res. Int. 2016, 85, 131–143. DOI: 10.1016/j.foodres.2016.04.033.
  • Liu, B.; Xu, H.; Zhao, H.; Liu, W.; Zhao, L.; Li, Y. Preparation and Characterization of Intelligent Starch/PVA Films for Simultaneous Colorimetric Indication and Antimicrobial Activity for Food Packaging Applications. Carbohydr. Polym. 2017, 157, 842–849. DOI: 10.1016/j.carbpol.2016.10.067.
  • Liu, L.; Jin, T.; Liu, C.; Hicks, K.; Mohanty, A. K.; Bhardwaj, R.; Misra, M.; Liu, L.; Jin, T.; Hicks, K. A Preliminary Study on Antimicrobial Edible Films from Pectin and Other Food Hydrocolloids by Extrusion Method a Preliminary Study on Antimicrobial Edible Films from Pectin and Other Food Hydrocolloids by Extrusion Method. J. Nat. Fibers 2008, 5, 366–382. DOI: 10.1080/15440470802460643.
  • Wu, J.; Wang, P.; Chen, S. C. Catechin-Impregnated PVA – Starch Film on Red Meat. J. Food Qual. 2010, 33, 780–801. DOI: 10.1111/j.1745-4557.2010.00350.x.
  • Chen, Y.; Zhao, H.; Liu, X.; Li, Z.; Liu, B.; Wu, J.; Shi, M.; Norde, W.; Li, Y. Tempo-Oxidized Konjac Glucomannan as Appliance for the Preparation of Hard Capsules. Carbohydr. Polym. 2016, 143, 262–269. DOI: 10.1016/j.carbpol.2016.01.072.
  • Abreu, A. S.; Oliveira, M.; Sá, A.; De; Rodrigues, R. M.; Cerqueira, M. A.; Vicente, A. A.; Machado, A. V. Antimicrobial Nanostructured Starch Based Films for Packaging. Carbohydr. Polym. 2015, 129, 127–134. DOI: 10.1016/j.carbpol.2015.04.021.
  • López, O.; Castillo, L.; Zaritzky, N.; Barbosa, S.; Villar, M.; García, M. A. Talc Nanoparticles Influence on Thermoplastic Corn Starch Film Properties. J. Mater. Sci 2015, 8, 338–345. DOI: 10.1016/j.mspro.2015.04.082.
  • Mathew, A. P.; Dufresne, A. Morphological Investigation of Nanocomposites from Sorbitol Plasticized Starch and Tunicin Whiskers. Biomacromolecules 2002, 3, 609–617. DOI: 10.1021/bm0101769.
  • Gao, F.; Li, D.; Bi, C. H.; Mao, Z. H.; Adhikari, B. Preparation and Characterization of Starch Crosslinked with Sodium Trimetaphosphate and Hydrolyzed by Enzymes. Carbohydr. Polym. 2014, 103, 310–318. DOI: 10.1016/j.carbpol.2013.12.028.
  • Priya, B.; Gupta, V. K.; Pathania, D.; Singha, A. S. Synthesis, Characterization and Antibacterial Activity of Biodegradable Starch/PVA Composite Films Reinforced with Cellulosic Fibre. Carbohydr. Polym. 2014, 109, 171–179. DOI: 10.1016/j.carbpol.2014.03.044.
  • Raj, B.K; U. S.; Siddaramaiah. Low Density Polyethylene/Starch Blend Films for Food Packaging Applications. Adv. Polym. Technol. 2004, 23, 32–45. DOI: 10.1002/adv.10068.
  • Lubis, M.; Gana, A.; Maysarah, S.; Ginting, M. H. S.; Harahap, M. B. Production of Bioplastic from Jackfruit Seed Starch (Artocarpus heterophyllus) Reinforced with Microcrystalline Cellulose from Cocoa Pod Husk (Theobroma cacao L.) Using Glycerol as Plasticizer. IOP Conf. Ser.: Mater. Sci. Eng. 2018, 309, 012100. DOI: 10.1088/1757-899X/309/1/012100.
  • Garcia, C. V.; Shin, G. H.; Kim, J. T. Metal Oxide-Based Nanocomposites in Food Packaging: Applications, Migration, and Regulations. Trends Food Sci. Technol. 2018, 82, 21–31. DOI: 10.1016/j.tifs.2018.09.021.
  • Hasan, M. M.; Zhou, Y.; Mahfuz, H.; Jeelani, S. Effect of SiO2 Nanoparticle on Thermal and Tensile Behavior of Nylon-6. Mater. Sci. Eng. A 2006, 429, 181–188. DOI: 10.1016/j.msea.2006.05.124.
  • Chen, W. W. J.; Shao, L.; Lu, S. Polymer Grafting Modification of the Surface of Nanosilicon Dioxide. Univ. Sci. Technol. Beijing, J. Univ. Sci. Technol. Beijing English Ed 2002, 9, 426–430.
  • Van Durme, K.; Van Mele, B.; Loos, W.; Du Prez, F. E. Introduction of Silica into Thermo-Responsive Poly(N-Isopropyl Acrylamide) Hydrogels: A Novel Approach to Improve Response Rates. Polymer 2005, 46, 9851–9862. DOI: 10.1016/j.polymer.2005.08.032.
  • Liu, Y.; Liu, Y.; Wei, S. Processing Technologies of EVOH/Nano-SiO2 High-Barrier Packaging Composites. 17th IAPRI World Conf. Packag. 2010, 2010, 269–274.
  • Jubeen, F.; Liaqat, A.; Sultan, M.; Zafar Iqbal, S.; Sajid, I.; Sher, F. Green Synthesis and Biological Evaluation of Novel 5-Fluorouracil Derivatives as Potent Anticancer Agents. Saudi Pharm. J. 2019, 27, 1164–1173. DOI: 10.1016/j.jsps.2019.09.013.
  • Jubeen, F.; Liaqat, A.; Amjad, F.; Sultan, M.; Zafar Iqbal, S.; Sajid, I.; Bilal Khan Niazi, M.; Sher, F. Synthesis of 5-Fluorouracil Cocrystals with Novel Organic Acids as Coformers and Anticancer Evaluation against HCT-116 Colorectal Cell Lines. Cryst. Growth Des. 2020, 20, 2406–2414. DOI: 10.1021/acs.cgd.9b01570.
  • Tahalyani, J.; Rahangdale, K. K.; Balasubramanian, K. The Dielectric Properties and Charge Transport Mechanism of π-Conjugated Segments Decorated with Intrinsic Conducting Polymer. RSC Adv. 2016, 6, 69733–69742. DOI: 10.1039/C6RA09554B.
  • Musa, M. B.; Yoo, M. J.; Kang, T. J.; Kolawole, E. G.; Ishiaku, U. S.; Yakubu, M. K.; Whang, D. J. Characterization and Thermomechanical Properties of Thermoplastic Potato Starch. J. Eng. Technol. 2013, 2, 9–16.
  • Hebeish, A.; Aly, A. A.; El-Shafei, A.; Zaghloul, S. Synthesis and Characterization of Cationized Starches for Application in Flocculation, Finishing and Sizing. Egypt. J. Chem. 2009, 52, 73–89.
  • Rashid, T.; Iqbal, D.; Hazafa, A.; Hussain, S.; Sher, F.; Sher, F. Formulation of Zeolite Supported Nano-Metallic Catalyst and Applications in Textile Effluent Treatment. J. Environ. Chem. Eng. 2020, 8, 104023. DOI: 10.1016/j.jece.2020.104023.
  • Kausar, A.; Sher, F.; Hazafa, A.; Javed, A.; Sillanpää, M.; Iqbal, M. Biocomposite of Sodium-Alginate with Acidified Clay for Wastewater Treatment: Kinetic, Equilibrium and Thermodynamic Studies. Int. J. Biol. Macromol. 2020, 161, 1272–1285. DOI: 10.1016/j.ijbiomac.2020.05.266.
  • Ramalla, I.; Gupta, R. K.; Bansal, K. Effect on Superhydrophobic Surfaces on Electrical Porcelain Insulator, Improved Technique at Polluted Areas for Longer Life and Reliability. IJET 2015, 4, 509. DOI: 10.14419/ijet.v4i4.5405.
  • Sher, F.; Iqbal, S. Z.; Albazzaz, S.; Ali, U.; Mortari, D. A.; Rashid, T. Development of Biomass Derived Highly Porous Fast Adsorbents for Post-Combustion CO2 Capture. Fuel 2020, 282, 118506. DOI: 10.1016/j.fuel.2020.118506.
  • Choi, M.; Xiangde, L.; Park, J. H.; Choi, D.; Heo, J.; Chang, M.; Lee, C.; Hong, J. Superhydrophilic Coatings with Intricate Nanostructure Based on Biotic Materials for Antifogging and Antibiofouling Applications. Chem. Eng. J. 2017, 309, 463–470. DOI: 10.1016/j.cej.2016.10.052.
  • Gokmen, F. O.; Yaman, E.; Temel, S. Eco-Friendly Polyacrylic Acid Based Porous Hydrogel for Heavy Metal Ions Adsorption: Characterization, Adsorption Behavior, Thermodynamic and Reusability Studies. Microchem. J. 2021, 168, 106357. DOI: 10.1016/j.microc.2021.106357.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.