102
Views
0
CrossRef citations to date
0
Altmetric
Brief Report

Synthesis of new N/S-containing compounds by Pd-catalyzed tandem reactions

, , &
Pages 502-506 | Received 10 Oct 2022, Accepted 16 Nov 2022, Published online: 28 Nov 2022

References

  • (a) Ilardi, E. A.; Vitaku, E.; Njardarson, J. T., Data-Mining for Sulfur and Fluorine: An Evaluation of Pharmaceuticals to Reveal Opportunities for Drug Design and Discovery. J. Med. Chem. 2014, 57, 2832, 2842. (b) Scott, K. A.; Njardarson, J. T. Top. Curr. Chem. 2018, 376, 5. DOI: 10.1021/jm401375q.
  • (a) Castanheiro, T.; Suffert, J.; Gulea, M.; Donnard, M.Org Lett, Aerobic Copper-Mediated Domino Three-Component Approach to 2-Aminobenzothiazole Derivatives. 2016, 18, 2588, 2591. (b) Castanheiro, T.; Schoenfelder, A.; Donnard, M.; Chataigner, I.; Gulea, M. J. Org. Chem. 2018, 83, 4505. (c) Basilio-Lopes, A.; Wagner, P.; Gulea, M. Eur. J. Org. Chem. 2019, 1361. (d) Choury, M.; Blond, G.; M. Gulea, M. Eur. J. Org. Chem. 2021, 2203. (e) Choury, M.; Wagner, P.; Rognan, C.; Blond, G.; Gulea, M. Adv. Synth. Catal. 2022, 364, 3238. DOI: 10.1021/acs.orglett.6b00967.
  • Choury, M.; Lopes, A. B.; Blond, G.; Gulea, M. Synthesis of Medium-Sized Heterocycles by Transition-Metal-Catalyzed Intramolecular Cyclization. Molecules 2020, 25, 3147. DOI: 10.3390/molecules25143147.
  • Ma, S.; Negishi, E. Palladium-Catalyzed Cyclization of.omega.-Haloallenes. A New General Route to Common, Medium, and Large Ring Compounds via Cyclic Carbopalladation. J. Am. Chem. Soc. 1995, 117, 6345–6357. DOI: 10.1021/ja00128a025.
  • (a) Castanheiro, T.; Donnard, M.; Gulea, M.; Suffert, J., Cyclocarbopalladation/Cross-Coupling Cascade Reactions in Sulfide Series: access to Sulfur Heterocycles. Org. Lett. 2014, 16, 3060, 3063. (b) Castanheiro, T.; Schoenfelder, A.; Suffert, J.; Donnard, M.; Gulea, M. C. R. Chim. 2017, 20, 624. DOI: 10.1021/ol501165h.
  • Experimental procedure: In a microwave vial were added a solution of sulfide 1a or 1q (1 equiv), Pd(PPh3)4 (0.1 equiv), Na2CO3 (3.0 equiv), tetrabutylammonium iodide (0,25 equiv), and phenyl boronic acid (1.5 equiv) in a mixture (4:1) of 1,4-dioxane and water. The vial was sealed, and the mixture was irradiated for 3 hours at 130 °C. The reaction mixture was then evaporated, heptane was added to dissolve the product, then the solution was filtered, and then concentrated under reduced pressure. The crude mixture was analyzed by 1H-NMR and then purified by flash column chromatography on silica gel to afford 7r (from 1a) or 7q (from 1q). 7r: 1H-NMR (CDCl3): δ 7.64 (d, J = 7.9 Hz, 1H), 7.40 (d, J= 7.9 Hz, 1H), 7.32 – 7.28 (m, 2H), 7.21 (t, J = 7.4 Hz, 1H), 7.14 – 7.04 (m, 3H), 7.03 (d, J = 7.5 Hz, 2H), 6.90 (t, J = 7.4 Hz, 1H), 6.73 (t, J = 7.5 Hz, 1H), 6.65 (d, J = 7.7 Hz, 1H), 5.60 (d, J = 15.8 Hz, 1H), 5.12 (d, J = 15.8 Hz, 1H), 4.69 (d, J = 14.9 Hz, 1H), 4.58 (d, J = 14.8 Hz, 1H), 2.68 – 2.59 (m, 1H), 2.56 – 2.47 (m, 1H), 0.56 (t, J = 7.4 Hz, 3H),. 13C-NMR (100 MHz): 151.3, 146.2, 142.2, 141.5, 135.6, 133.0, 132.9, 132.7, 130.8, 128.9, 128.1, 127.5, 127.3, 126.9, 122.9, 122.3, 119.9, 108.8, 45.5, 31.0, 28.1, 11.6. HRMS m/z calcd for C25H23N2S [M + H]+: 383.1582, found: 383.1573. 7q: 1H-NMR (CDCl3): δ 7.50 (d, J = 7.8 Hz, 1H), 7.20 (t, J = 7.5 Hz, 1H), 7.16 – 7.12 (m, 2H), 7.12 - 7.04 (m, 4H), 6.95 – 6.91 (m, 2H), 6.85 (td, J = 7.5, 1.4, 1H), 6.51 (td, J = 7.6, 1.3, 1H), 6.33 (dd, J = 7.7, 1.4, 1H), 5.57 (d, J = 17.7 Hz, 1H), 5.42 (d, J = 17.7 Hz, 1H), 4.66 (d, J = 12.3 Hz, 1H), 4.06 (d, J = 12.4 Hz, 1H), 2.90 – 2.83 (m, 1H), 2.73 – 2.65 (m, 1H), 1.11 (t, J = 7.2 Hz, 3H).
  • Reviews on the desulfanylative coupling: (a) Prokopcova, H; Kappe, C. O. Angew. Chem. Int. Ed., The Liebeskind-Srogl C-C Cross-Coupling Reaction. 2009, 48, 2276, 2286. (b) Cheng, H.-G.; Chen; H.; Liu, Y.; Zhou, Q. Asian J. Org. Chem. 2018, 7, 490. DOI: 10.1002/anie.200802842.
  • Basilio-Lopes, A.; Choury, M.; Wagner, P.; Gulea, M. Tandem Double-Cross-Coupling/Hydrothiolation Reaction of 2-Sulfenyl Benzimidazoles with Boronic Acids. Org. Lett. 2019, 21, 5943–5947. DOI: 10.1021/acs.orglett.9b02067.
  • Liebeskind, L. S.; Srogl, J. Heteroaromatic Thioether-Boronic Acid Cross-Coupling under Neutral Reaction Conditions. Org. Lett. 2002, 4, 979–981. DOI: 10.1021/ol0200091.
  • Experimental procedure: To a sealed tube containing a mixture of substrates 12a (0.5 equiv) and 12b (0.5 equiv), phenyl boronic acid (3.0 equiv), K2CO3 (3.0 equiv), Pd2(dba)3 (5 mol%) and PCy3 (20 mol%), was added as the solvent a mixture of 1,4-dioxane/water (4:1, 0.1 M). This mixture was deoxygenated using a freeze-thaw method (three cycles), put under argon atmosphere, and sealed, then stirred at 130 °C for 19 h. The resulting reaction mixture was concentrated to dryness under reduced pressure and the crude residue was purified by flash column chromatography on silica gel to afford a mixture of products 13a8 and 13b in a 1:1 ratio. 13b: 1H NMR (400 MHz, CDCl3) δ 7.51 – 7.44 (m, 2H), 7.40 – 7.33 (m, 2H), 7.26 (m, 6H), 7.17 – 7.09 (m, 2H), 7.06 – 6.99 (m, 2H), 6.99 – 6.93 (m, 3H), 6.93 – 6.87 (m, 2H), 4.83 (t, J = 6.2 Hz, 1H), 4.32 (d, J = 6.2 Hz, 2H), 3.51 (s, 2H), 2.10 (s, 3H), 1.54 (q, J = 7.5 Hz, 2H), 0.59 (t, J = 7.5 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 147.7, 140.9, 137.9, 137.0, 134.7, 133.4, 131.4, 131.4, 131.3, 129.9, 129.4, 129.3, 129.1, 129.0, 128.8, 128.7, 128.7, 128.2, 126.9, 126.4, 118.0, 77.5, 77.2, 76.8, 43.4, 35.8, 25.3, 21.2, 13.2. HRMS (ESI-Q-TOF) m/z calcd for C34H32N2S [M]+: 500.2286, found: 500.2299.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.