95
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Utilization of sulfur function in directed catalytic C-H transformation: site-selective substitution on indole and naphthalene skeletons

ORCID Icon & ORCID Icon
Pages 486-492 | Received 24 Oct 2022, Accepted 21 Nov 2022, Published online: 06 Dec 2022

References

  • Sambiagio, C.; Schönbauer, D.; Blieck, R.; Dao-Huy, T.; Pototschnig, G.; Schaaf, P.; Wiesinger, T.; Zia, M. F.; Wencel-Delord, J.; Besset, T.; et al. A Comprehensive Overview of Directing Groups Applied in Metal-Catalysed C-H Functionalisation Chemistry. Chem. Soc. Rev. 2018, 47, 6603–6743. DOI: 10.1039/c8cs00201k.
  • (a) Miura, M.; Satoh, T.; Hirano, K. Development of Direct Aromatic Coupling Reactions by Transition-Metal Catalysis. Bull. Chem. Soc. Jpn., 2014, 87, 751–764. (b) Nishii, Y.; Miura, M. 10, 9747–9757; d) O. Baudoin. ACS Catal. 2020, 10, 9747–9757. DOI: 10.1246/bcsj.20140099.
  • (a) Ueura, K.; Satoh, T.; Miura, M. An Efficient Waste-Free Oxidative Coupling via Regioselective C-H Bond Cleavage: Rh/Cu-Catalyzed Reaction of Benzoic Acids with Alkynes and Acrylates under Air. Org. Lett. 2007, 9, 1407–1409. (b) Ueura, K.; Satoh, T.; Miura, M. Rhodium-and Iridium-Catalyzed Oxidative Coupling of Benzoic Acids with Alkynes via Regioselective C − H Bond Cleavage. J. Org. Chem. 2007, 72, 5362–5367. DOI: 10.1021/ol070406h.
  • (a) Satoh, T.; Miura, M. Oxidative Coupling of Aromatic Substrates with Alkynes and Alkenes under Rhodium Catalysis. Chemistry 2010, 16, 11212–11222. (b) Song, G.; Wang, F.; Li. X. C–C, C–O and C–N Bond Formation Via Rhodium (iii)-Catalyzed Oxidative C–H Activation. Chem. Soc. Rev. 2012, 41, 3651–3678. (c) Colby, D. A.; Tsai, A. S.; Bergman, R. G.; Ellman, J. A. Rhodium Catalyzed Chelation-Assisted C–H Bond Functionalization Reactions. Acc. Chem. Res. 2012, 45, 814–825. (d) Wencel-Deload, J.; Patureau, F. W.; Glorius, F. Rh (III)-and Ir (III)-Catalyzed C–C Bond Cross Couplings from C–H Bonds. Top. Organomet. Chem. 2015, 55, 1–27. DOI: 10.1002/chem.201001363.
  • (a) Galliford, C. V.; Scheidt, K. A. Pyrrolidinyl-Spirooxindole Natural Products as Inspirations for the Development of Potential Therapeutic Agents. Angew. Chem. Int. Ed. Engl. 2007, 46, 8748–8758. (b) Kochanowska-Karamyan, A. J.; Hamann, M. T. Marine Indole Alkaloids: Potential New Drug Leads for the Control of Depression and Anxiety. Chem. Rev. 2010, 110, 4489–4497. (c) Taber, D. F.; Tirunahari, P. K. Indole Synthesis: A Review and Proposed Classification. Tetrahedron 2011, 67, 7195–7210. (d) Taylor, R. D.; MacCoss, M.; Lawson, A. D. J. Rings in Drugs: Miniperspective. J. Med. Chem. 2014, 57, 5845–5859. DOI: 10.1002/anie.200701342.
  • (a) Leitch, J. A.; Bhonoah, Y.; Frost, C. G. Beyond C2 and C3: Transition-Metal-Catalyzed C–H Functionalization of Indole. ACS Catal. 2017, 7, 5618–5627. (b) Petrini, M. Regioselective Direct C‐Alkenylation of Indoles. Chem. Eur. J. 2017, 23, 16115–16151. (c) Yang, Y.; Shi, Z. Regioselective Direct Arylation of Indoles on the Benzenoid Moiety. Chem. Commun. 2018, 54, 1676–1685. (d) Kalepu, J.; Gandeepan, P.; Ackermann, L.; Pilarski, L. T. C4–H Indole Functionalisation: Precedent and Prospects. Chem. Sci. 2018, 9, 4203–4216. (e) Shah, T. A.; De, P. B.; Pradhan, S.; Punniyamurthy, T. Transition-Metal-Catalyzed Site-Selective C7-Functionalization of Indoles: Advancement and Future Prospects. Chem. Commun. 2019, 55, 572–587. DOI: 10.1021/acscatal.7b01785.
  • Maehara, A.; Tsurugi, H.; Satoh, T.; Miura, M. Regioselective C-H Functionalization Directed by a Removable Carboxyl Group: Palladium-Catalyzed Vinylation at the Unusual Position of Indole and Related Heteroaromatic Rings. Org. Lett. 2008, 10, 1159–1162. DOI: 10.1021/ol8000602.
  • Okada, T.; Sakai, A.; Hinoue, T.; Satoh, T.; Hayashi, Y.; Kawauchi, S.; Chandrababunaidu, K.; Miura, M. Rhodium(III)-Catalyzed Oxidative Coupling of N-Phenylindole-3-Carboxylic Acids with Alkenes and Alkynes via C4-H and C2-H/C2'-H Bond Cleavage. J. Org. Chem. 2018, 83, 5639–5649. DOI: 10.1021/acs.joc.8b00638.
  • Tang, K.-X.; Wang, C.-M.; Gao, T.-H.; Chen, L.; Fan, L.; Sun, L.-P. Transition Metal‐Catalyzed C − H Bond Functionalizations by Use of Sulfur‐Containing Directing Groups. Adv. Synth. Catal. 2019, 361, 26–38. DOI: 10.1002/adsc.201800484.
  • (a) Nobushige, K.; Hirano, K.; Satoh, T.; Miura, M. Rhodium(III)-Catalyzed Ortho-Alkenylation through C-H Bond Cleavage Directed by Sulfoxide Groups. Org. Lett. 2014, 16, 1188–1191. (b) Yokoyama, Y.; Unoh, Y.; Hirano, K.; Satoh, T.; Miura, M. Rhodium (III)-Catalyzed Regioselective C–H Alkenylation of Phenylphosphine Sulfides. J. Org. Chem. 2014, 79, 7649–7655. (c) Yokoyama, Y.; Unoh, Y.; Bohmann, R. A.; Satoh, T.; Hirano, K.; Bolm, C.; Miura, M. Rhodium-Catalyzed Direct Coupling of Benzothioamides with Alkenes and Alkynes through Directed C–H Bond Cleavage. Chem. Lett. 2015, 44, 1104–1106. (d) Unoh, Y.; Hirano, K.; Satoh, T.; Miura, M. Rhodium (III)-Catalyzed Oxidative Alkenylation of 1, 3-Dithiane-Protected Arenecarbaldehydes via Regioselective C–H Bond Cleavage. Org. Lett. 2015, 17, 704–707. (e) Nobushige, K.; Hirano, K.; Satoh, T.; Miura, M. Rhodium-Catalyzed Direct Ortho-Alkenylation of Phenyl Sulfones with Alkynes Utilizing Sulfonyl Function as Modifiable Directing Group. Tetrahedron 2015, 71, 6506–6512. (f) Unoh, Y.; Satoh, T.; Hirano, K.; Miura, M. Rhodium (III)-Catalyzed Direct Coupling of Arylphosphine Derivatives with Heterobicyclic Alkenes: A Concise Route to Biarylphosphines and Dibenzophosphole Derivatives. ACS. Catal. 2015, 5, 6634–6639. (g) Unoh, Y.; Yokoyama, Y.; Satoh, T.; Hirano, K.; Miura, M. Regioselective Synthesis of Benzo [b] Phosphole Derivatives Via Direct Ortho-Alkenylation and Cyclization of Arylthiophosphinamides. Org. Lett. 2016, 18, 5436–5439. DOI: 10.1021/ol5000605.
  • (a) Yu, M.; Xie, Y.; Xie, C.; Zhang, Y. Palladium-Catalyzed C-H Alkenylation of Arenes Using Thioethers as Directing Groups. Org. Lett. 2012, 14, 2164–2167. (b) Zhang, X.-S.; Zhu, Q.-L.; Zhang, Y.-F.; Li, Y.-B.; Shi, Z.-J. Controllable Mono‐/Dialkenylation of Benzyl Thioethers through Rh‐Catalyzed Aryl C-H Activation. Chem. Eur. J. 2013, 19, 11898–11903. DOI: 10.1021/ol3006997.
  • Kona, C. N.; Nishii, Y.; Miura, M. Thioether-Directed Selective C4 C-H Alkenylation of Indoles under Rhodium Catalysis. Org. Lett. 2018, 20, 4898–4901. DOI: 10.1021/acs.orglett.8b02038.
  • (a) Wang, L.; He, W.; Yu, Z. Transition-Metal Mediated Carbon–Sulfur Bond Activation and Transformations. Chem. Soc. Rev. 2013, 42, 599–621. (b) Modha, S. G.; Mehta, V. P.; der Eycken, E. V. V. Transition Metal-Catalyzed C–C Bond Formation via C–S Bond Cleavage: An Overview. Chem. Soc. Rev. 2013, 42, 5042–621. (c) F. Pan, Shi, Z.-J. Recent Advances in Transition-Metal-Catalyzed C–S Activation: From Thioester to (Hetero) Aryl Thioether. ACS Catal. 2014, 4, 280–288. (d) Gao, K.; Otsuka, S.; Baralle, A.; Nogi, K.; Yorimitsu, H.; Osuka, A. Cross-Coupling of Aryl Sulfides Powered by N-Heterocyclic Carbene Ligands. J. Synth. Org. Chem. Jpn. 2016, 74, 1119–1127. DOI: 10.1039/C2CS35323G.
  • Kona, C. N.; Nishii, Y.; Miura, M. Sulfur-Directed C7-Selective Alkenylation of Indoles under Rhodium Catalysis. Org. Lett. 2021, 23, 6252–6256. DOI: 10.1021/acs.orglett.1c01990.
  • Shigeno, M.; Nishii, Y.; Satoh, T.; Miura, M. Rhodium-Catalyzed peri -Selective Direct Alkenylation of 1-(Methylthio)Naphthalene. Asian J. Org. Chem. 2018, 7, 1334–1337. DOI: 10.1002/ajoc.201800212.
  • Brand, J. P.; Charpentier, J.; Waser, J. Direct Alkynylation of Indole and Pyrrole Heterocycles. Angew. Chem. Int. Ed. Engl. 2009, 48, 9346–9349. DOI: 10.1002/anie.200905419.
  • Kona, C. N.; Nishii, Y.; Miura, M. Iridium-Catalyzed Direct C4- and C7-Selective Alkynylation of Indoles Using Sulfur-Directing Groups. Angew. Chem. Int. Ed. Engl. 2019, 58, 9856–9860. DOI: 10.1002/anie.201904709.
  • Gandon, V.; Aubert, C.; Malacria, M. Recent Progress in Cobalt-Mediated [2 + 2 + 2] Cycloaddition Reactions. Chem. Commun. 2006, 21, 2209–2217. DOI: 10.1039/b517696b.
  • (a) Barday, M.; Janot, C.; Halcovitch, N. R.; Muir, J.; Aïssa, C. Cross-Coupling of α-Carbonyl Sulfoxonium Ylides with C-H Bonds. Angew. Chem. Int. Ed. Engl. 2017, 56, 13117–13121. (b) Xu, Y.; Zhou, X.; Zheng, G.; Li, X. Sulfoxonium Ylides as a Carbene Precursor in Rh (III)-Catalyzed C–H Acylmethylation of Arenes. Org. Lett. 2017, 19, 5256–5259. DOI: 10.1002/anie.201706804.
  • Kona, C. N.; Nishii, Y.; Miura, M. Thioether-Directed C4-Selective C-H Acylmethylation of Indoles Using α-Carbonyl Sulfoxonium Ylides. Org. Lett. 2020, 22, 4806–4811. DOI: 10.1021/acs.orglett.0c01617.
  • Li, Z.; Shi, Z.; He, C. J. Addition of Heterocycles to Electron Deficient Olefins and Alkynes Catalyzed by Gold(III). Organomet. Chem. 2005, 690, 5049–5054. DOI: 10.1016/j.jorganchem.2005.03.009.
  • Kona, C. N.; Oku, R.; Nishii, Y.; Miura, M. Peri-Selective Direct Acylmethylation and Amidation of Naphthalene Derivatives Using Iridium and Rhodium Catalysts. Synthesis 2021, 53, 3126–3136. DOI: 10.1055/a-1472-1059.
  • Minami, H.; Otsuka, S.; Nogi, K.; Yorimitsu, H. Palladium-Catalyzed Borylation of Aryl Sulfoniums with Diborons. ACS Catal. 2018, 8, 579–583. DOI: 10.1021/acscatal.7b03841.
  • Zhao, J.-N.; Kayumov, M.; Wang, D.-Y.; Zhang, A. Transition-Metal-Free Aryl-Heteroatom Bond Formation via C-S Bond Cleavage. Org. Lett. 2019, 21, 7303–7306. DOI: 10.1021/acs.orglett.9b02584.
  • Moon, S.; Nishii, Y.; Miura, M. Thioether-Directed Peri-Selective C-H Arylation under Rhodium Catalysis: Synthesis of Arene-Fused Thioxanthenes. Org. Lett. 2019, 21, 233–236. DOI: 10.1021/acs.orglett.8b03675.
  • Kakiuchi, F.; Kan, S.; Igi, K.; Chatani, N.; Murai, S. A Ruthenium-Catalyzed Reaction of Aromatic Ketones with Arylboronates: A New Method for the Arylation of Aromatic Compounds via C-H Bond Cleavage. J. Am. Chem. Soc. 2003, 125, 1698–1699. DOI: 10.1021/ja029273f.
  • Du, C.; Ye, S.; Chen, J.; Guo, Y.; Liu, Y.; Lu, K.; Liu, Y.; Qi, T.; Gao, X.; Shuai, Z.; Yu, G. Asymmetrical Fluorene[2,3-b]Benzo[d]Thiophene Derivatives: Synthesis, Solid-State Structures, and Application in Solution-Processable Organic Light-Emitting Diodes. Chemistry 2009, 15, 8275–8282. DOI: 10.1002/chem.200900860.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.