146
Views
0
CrossRef citations to date
0
Altmetric
Research articles

An ultra-sound assisted synthesis of α-aminophosphonates from benzyl halides via sequential Kornblum and Kabachnik-fields reaction

&
Pages 417-423 | Received 30 Sep 2022, Accepted 08 Dec 2022, Published online: 22 Dec 2022

References

  • Horiguchi, M.; Kandatstu, M. Isolation of 2-Aminoethane Phosphonic Acid from Rumen Protozoa. Nature 1959, 184, 901–902. DOI: 10.1038/184901b0.
  • Hu, D. Y.; Wan, Q. Q.; Yang, S.; Song, B. A.; Bhadury, P. S.; Jin, L. H.; Yan, K.; Liu, F.; Chen, Z.; Xue, W. Synthesis and Antiviral Activities of Amide Derivatives Containing the α-Aminophosphonate Moiety. J. Agric. Food Chem. 2008, 56, 998–1001. DOI: 10.1021/jf072394k.
  • Rasal, S. A.; Dhavan, P. P.; Jadhav, B. L.; Shimpi, N. G. Synthesis of New α‐Aminophosphonates Using Nanoscale Nickel‐Based Metal–Organic Framework as a Heterogeneous Catalyst and Their Antibacterial Activity. Appl. Organomet. Chem. 2020, 34, 5317. DOI: 10.1002/aoc.5317.
  • Sudileti, M.; Chintha, V.; Nagaripati, S.; Gundluru, M.; Yasmin, S. H.; Wudayagiri, R.; Cirandur, S. R. Green Synthesis, Molecular Docking, anti-Oxidant and anti-Inflammatory Activities of α-Aminophosphonates. Med. Chem. Res. 2019, 28, 1740–1754. DOI: 10.1007/s00044-019-02411-8.
  • Li, S.; Liu, R.; Han, X.; Ge, C.; Zhang, X. Diethyl α-Aminophosphonate Containing Lubricating Additives Synthesized from (3-Aminophenyl) Boronic Acid Pinacol Ester. Inorg. Chem. Commun. 2022, 140, 109477. DOI: 10.1016/j.inoche.2022.109477.
  • Stanfield, M. K.; Carrascal, J.; Henderson, L. C.; Eyckens, D. J. α-Aminophosphonate Derivatives for Enhanced Flame Retardant Properties in Epoxy Resin. Materials 2021, 14, 3230. DOI: 10.3390/ma14123230.
  • Tolgyesi, A.; Toth, E.; Farkas, T.; Simon, A.; Dernovics, M.; Balint, M. Determination of Aminophosphonate Herbicides in Glutamate Loaded Spice Mix by LC-IDMS and Method Extension to Other Food Matrices. Food Anal. Methods 2022, 15, 2012–2025. DOI: 10.1007/s12161-022-02248-9.
  • Wang, J.; Ansari, M. F.; Lin, J. M.; Zhou, C. H. Design and Synthesis of Sulfanilamide Aminophosphonates as Novel Antibacterial Agents towards Escherichia coli. Chin. J. Chem. 2021, 39, 2251–2263. 5. DOI: 10.1002/cjoc.20210016.
  • Rao, X.; Song, Z.; He, L. Synthesis and Antitumor Activity of Novel α‐Aminophosphonates from Diterpenic Dehydroabietylamine. Heteroatom Chem. 2008, 19, 512–516. DOI: 10.1002/hc.20471.
  • Nayab, R. S.; Maddila, S.; Krishna, M. P.; Titinchi, S. J.; Thaslim, B. S.; Chintha, V.; Wudayagiri, R.; Nagam, V.; Tartte, V.; Chinnam, S.; Chamarthi, N. R. In Silico Molecular Docking and in Vitro Antioxidant Activity Studies of Novel α-Aminophosphonates Bearing 6-Amino-1, 3-Dimethyl Uracil. J. Recept. Signal Transduct. Res. 2020, 40, 166–172. DOI: 10.1080/10799893.2020.1722166.
  • Ram, T.; Dubey, R.; Chaudhary, N. Synthesis and Antimicrobial Evaluation of 2-[(Substituedphenyl)-5-(1-Phenyl-3-(Piperazinyl) Pyrido [3, 2-f] Quinazolin-4 (1h)-yl]-1, 3, 4-Thiadiazoles. Indonesian J. Pharm. 2016, 27, 183. DOI: 10.14499/indonesianjpharm27iss4pp183.
  • Pudovik, A. N.; Konovalova, I. V. Addition Reactions of Esters of Phosphorus (III) Acids with Unsaturated Systems. Synthesis 1979, 1979, 81–96. DOI: 10.1055/s-1979-28566.
  • Keglevich, G.; Balint, E. The Kabachnik–Fields Reaction: Mechanism and Synthetic Use. Molecules 2012, 17, 12821–12835. DOI: 10.3390/molecules171112821.
  • Banerjee, I.; Panda, T. K. Recent Advances in the Carbon–Phosphorus (C–P) Bond Formation from Unsaturated Compounds by s-and p-Block Metals. Org. Biomol. Chem. 2021, 19, 6571–6587. DOI: 10.1039/D1OB01019K.
  • Amira, A.; Aouf, Z.; K'tir, H.; Chemam, Y.; Ghodbane, R.; Zerrouki, R.; Aouf, N. ‐E. Recent Advances in the Synthesis of α‐Aminophosphonates: A Review. ChemistrySelect 2021, 6, 6137–6149. DOI: 10.1002/slct.202101360.
  • Zhan, Z. P.; Li, J. P. Bismuth (III) Chloride–Catalyzed Three‐Component Coupling: synthesis of α‐Amino Phosphonates. Synth. Commun. 2005, 35, 2501–2508. DOI: 10.1080/00397910500212692.
  • Ha, H. J.; Nam, G. S. An Efficient Synthesis of Anilinobenzyl Phosphonates. Synth. Commun. 1992, 22, 1143–1148. DOI: 10.1080/00397919208021098.
  • Sobhani, S.; Tashrifi, Z. One‐Pot Synthesis of Primary 1‐Aminophosphonates: Coupling Reaction of Carbonyl Compounds, Hexamethyldisilazane, and Diethyl Phosphite Catalyzed by Al(OTf)3. Heteroatom Chem. 2009, 20, 109–115. DOI: 10.1002/hc.20517.
  • Mitragotri, S. D.; Pore, D. M.; Desai, U. V.; Wadgaonkar, P. P. Sulfamic Acid: An Efficient and Cost-Effective Solid Acid Catalyst for the Synthesis of α-Aminophosphonates at Ambient Temperature. Catal. Commun. 2008, 9, 1822–1826. DOI: 10.1016/j.catcom.2008.02.011.
  • Odedairo, T.; Chen, J.; Zhu, Z. Metal–Support Interface of a Novel Ni–CeO2 Catalyst for Dry Reforming of Methane. Catal. Commun. 2013, 31, 25–31. DOI: 10.1016/j.catcom.2012.11.008.
  • Kaboudin, B.; Zahedi, H. Calcium Chloride as an Efficient Lewis Base Catalyst for the One-Pot Synthesis of α-Aminophosphonic Esters. Chem. Lett. 2008, 37, 540–541. DOI: 10.1246/cl.2008.540.
  • Tian, Y. P.; Xu, F.; Wang, Y.; Wang, J. J.; Li, H. L. PPh3-Catalysed One-Pot Three-Component Syntheses of α-Aminophosphonates under Solvent-Free Conditions. J. Chem. Res. 2009, 2009, 78–80. DOI: 10.3184/030823409X401097.
  • Kassaee, M. Z.; Movahedi, F.; Masrouri, H. ZnO Nanoparticles as an Efficient Catalyst for the One-Pot Synthesis of α-Amino Phosphonates. Synlett 2009, 2009, 1326–1330. DOI: 10.1055/s-0028-1088135.
  • Bobkov, G. V.; Mikhailov, S. N.; Van Aerschot, A.; Herdewijn, P. Phosphoramidite Building Blocks for Efficient Incorporation of 2′-O-Aminoethoxy (and Propoxy) Methyl Nucleosides into Oligonucleotides. Tetrahedron 2008, 64, 6238–6251. DOI: 10.1016/j.tet.2008.04.110.
  • Guan, X. K.; Zhang, H.; Gao, J. G.; Sun, D. Y.; Qin, X. S.; Jiang, G. F.; Zhang, G. L.; Zhang, S. Asymmetric Synthesis of 1, 1, 1-Triarylethanes by Chiral Imidodiphosphoric Acid Catalyzed Nucleophilic Addition of Pyrrole and Indoles to 3-Vinylindoles. J. Org. Chem. 2019, 84, 12562–12572. DOI: 10.1021/acs.joc.9b02024.
  • Firth, G.; Blower, J. E.; Bartnicka, J. J.; Mishra, A.; Michaels, A. M.; Rigby, A.; Darwesh, A.; Al-Salemee, F.; Blower, P. J. Non-Invasive Radionuclide Imaging of Trace Metal Trafficking in Health and Disease:“PET Metallomics. RSC Chem. Biol. 2022, 3, 495–518. DOI: 10.1039/D2CB00033D.
  • Bhattacharya, A. K.; Kaur, T. An Efficient One-Pot Synthesis of α-Amino Phosphonates Catalyzed by Bismuth Nitrate Pentahydrate. Synlett 2007, 2007, 0745–0748. DOI: 10.1055/s-2007-970762.
  • Bhattacharya, A. K.; Rana, K. C. Amberlite-IR 120 Catalyzed Three-Component Synthesis of α-Amino Phosphonates in One-Pot. Tetrahedron Lett. 2008, 49, 2598–2601. DOI: 10.1016/j.tetlet.2008.02.102.
  • Heydari, A.; Hamadi, H.; Pourayoubi, M. A New One-Pot Synthesis of α-Amino Phosphonates Catalyzed by H3PW12O40. Catal. Commun. 2007, 8, 1224–1226. DOI: 10.1016/j.catcom.2006.11.008.
  • Malik, A. A.; Dangroo, N. A.; Ara, T. Microwave‐Assisted Tandem Kornblum Oxidation and Biginelli Reaction for the Synthesis of Dihydropyrimidones. ChemistrySelect 2020, 5, 12965–12970. DOI: 10.1002/slct.202002864.
  • Malik, A. A.; Ara, T. An Efficient, Catalyst and Solvent Free Staudinger Phosphite Reaction for the Synthesis of Phosphoramidates under Mild Conditions. Synth. Commun. 2022, 52, 888–897. DOI: 10.1080/00397911.2022.2056851.
  • Ranu, B. C.; Hajra, A. A Simple and Green Procedure for the Synthesis of α-Aminophosphonate by a One-Pot Three-Component Condensation of Carbonyl Compound, Amine and Diethyl Phosphite without Solvent and Catalyst. Green Chem. 2002, 4, 551–554. DOI: 10.1039/B205747F.
  • Zahouily, M.; Elmakssoudi, A.; Mezdar, A.; Rayadh, A.; Sebti, S. Uncatalysed Preparation of α-Amino Phosphonates under Solvent Free Conditions. J. Chem. Res. 2005, 2005, 324–327. DOI: 10.3184/0308234054323887.
  • Kabachnik, M. M.; Zobnina, E. V.; Beletskaya, I. P. Catalyst-Free Microwave-Assisted Synthesis of α-Aminophosphonates in a Three-Component System: R1C(O)R2-(EtO)2 P (O) H-RNH2. Synlett 2005, 09,1393–1396. DOI: 10.1055/s-2005-868519.
  • Mu, X. J.; Lei, M. Y.; Zou, J. P.; Zhang, W. Microwave-Assisted Solvent-Free and Catalyst-Free Kabachnik–Fields Reactions for α-Amino Phosphonates. Tetrahedron Lett. 2006, 47, 1125–1127. DOI: 10.1016/j.tetlet.2005.12.027.
  • Keglevich, G.; Szekrenyi, A. Eco-Friendly Accomplishment of the Extended Kabachnik-Fields Reaction; a Solvent-and Catalyst-Free Microwave-Assisted Synthesis of α-Aminophosphonates and α-Aminophosphine Oxides. LOC. 2008, 5, 616–622. DOI: 10.2174/157017808786857598.
  • Sravya, G.; Balakrishna, A.; Zyryanov, G. V.; Mohan, G.; Reddy, C. S.; Bakthavatchala Reddy, N. Synthesis of α-Aminophosphonates by the Kabachnik-Fields Reaction. Phosphorus Sulfur Silicon Relat. Elem. 2020, 196, 353–381. DOI: 10.1080/10426507.2020.1854258.
  • Dave, P.; Byun, H. S.; Engel, R. An Improved Direct Oxidation of Alkyl Halides to Aldehydes. Synth. Commun. 1986, 16, 1343–1346. DOI: 10.1080/00397918608056381.
  • Dar, B.; Singh, A.; Sahu, A.; Patidar, P.; Chakraborty, A.; Sharma, M.; Singh, B. Catalyst and Solvent-Free, Ultrasound Promoted Rapid Protocol for the One-Pot Synthesis of α-Aminophosphonates at Room Temperature. Tetrahedron Lett. 2012, 53, 5497–5502. DOI: 10.1016/j.tetlet.2012.07.123.
  • Agawane, S. M.; Nagarkar, J. M. Nano Ceria Catalyzed Synthesis of α-Aminophosphonates under Ultrasonication. Tetrahedron Lett. 2011, 52, 3499–3504. DOI: 10.1016/j.tetlet.2011.04.112.
  • Mittersteiner, M.; Farias, F. F.; Bonacorso, H. G.; Martins, M. A.; Zanatta, N. Ultrasound-Assisted Synthesis of Pyrimidines and Their Fused Derivatives: A Review. Ultrason. Sonochem. 2021, 79, 105683. DOI: 10.1016/j.ultsonch.2021.105683.
  • Moumeni, O.; Chafaa, S.; Kerkour, R.; Benbouguerra, K.; Chafai, N. Synthesis, Structural and Anticorrosion Properties of Diethyl (Phenylamino) Methyl) Phosphonate Derivatives: experimental and Theoretical Study. J. Mol. Struct. 2020, 1206, 127693. DOI: 10.1016/j.molstruc.2020.127693.
  • Sabry, E.; Mohamed, H. A.; Ewies, E. F.; Kariuki, B. M.; Darwesh, O. M.; Bekheit, M. S. Microwave-Assisted Synthesis of Novel Sulfonamide-Based Compounds Bearing α-Aminophosphonate and Their Antimicrobial Properties. J. Mol. Struct. 2022, 1266, 133553. DOI: 10.1016/j.molstruc.2022.133553.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.