60
Views
0
CrossRef citations to date
0
Altmetric
Research articles

Chemometrics approach for adsorption multi-response optimization of Cu(II), Zn(II), and Cd(II) ions from phosphoric acid solution using natural clay

ORCID Icon, ORCID Icon, , , , & show all
Pages 424-434 | Received 27 Sep 2022, Accepted 27 Dec 2022, Published online: 10 Jan 2023

References

  • Kouzbour, S.; Gourich, B.; Gros, F.; Vial, C.; Allam, F.; Stiriba, Y. Comparative Analysis of Industrial Processes for Cadmium Removal from Phosphoric Acid: A Review. Hydrometallurgy 2019, 188, 222–247. DOI: 10.1016/j.hydromet.2019.06.014.
  • Zheng, G.; Xia, J.; Chen, Z. Overview of Current Phosphoric Acid Production Processes and a New Idea of Kiln Method. MROC 2021, 18, 328–338. DOI: 10.2174/1570193X17999200719134034.
  • Gani, R.; Jiméner-Gonzàlez, C.; Kate, A.; Crafts, P. A.; Powell, L.; Atherton, J. H.; Cordiner, J. L. A Modern Approach to Solvent Selection. Chem. Eng. 2006, 113, 30–43.
  • de Boer, M. A.; Wolzak, L.; Slootweg, J. C. Phosphorus: Reserves, Production, and Applications. In Phosphorus Recovery and Recycling; Ohtake, H., Tsuneda, S., Eds. Springer: Singapore, 2019; pp. 75–100. DOI: 10.1007/978-981-10-8031-9_5.
  • El-Asmy, A. A.; Serag, H.; Mahdy, M. A.; Amin, M. I. Purification of Phosphoric Acid by Minimizing Iron, Copper, Cadmium and Fluoride. Sep. Purif. Technol. 2008, 61, 287–292. DOI: 10.1016/j.seppur.2007.11.004.
  • Saleh, A.; El-Zahhar, A. A. Adsorption of Iron(III) from Phosphoric Acid Solution on Aminotrimethylene Phosphonic Acid Impregnated Resin. Arab J. Nucl. Sci. Appl. 2015, 48, 1–12.
  • Egbosiuba, T. C.; Abdulkareem, A. S.; Tijani, J. O.; Ani, J. I.; Krikstolaityte, V.; Srinivasan, M.; Veksha, A.; Lisak, G. Taguchi Optimization Design of Diameter-Controlled Synthesis of Multi Walled Carbon Nanotubes for the Adsorption of Pb(II) and Ni(II) from Chemical Industry Wastewater. Chemosphere 2021, 266, 128937. DOI: 10.1016/j.chemosphere.2020.128937.
  • Daryani, M.; Jodeiri, N.; Fatehifar, E.; Shahbazi, J. Optimization of Operating Conditions in Purification of Wet Process Phosphoric Acid in a Liquid-Liquid Extraction Column. Chem. Eng. Commun. 2022, 209, 1082–1095. DOI: 10.1080/00986445.2021.1946520.
  • Mattioli, M.; Giardini, L.; Roselli, C.; Desideri, D. Mineralogical Characterization of Commercial Clays Used in Cosmetics and Possible Risk for Health. Appl. Clay Sci. 2016, 119, 449–454. DOI: 10.1016/j.clay.2015.10.023.
  • Singh, N. B. Clays and Clay Minerals in the Construction Industry. Minerals 2022, 12, 301. DOI: 10.3390/min12030301.
  • Yuan, G. D.; Theng, B. K. G.; Churchman, G. J.; Gates, W. P. Chapter 5. 1 - Clays and Clay Minerals for Pollution Control. Dev. Clay Sci. Elsevier, Amsterdam, 2013, 5, 587–644. DOI: 10.1016/B978-0-08-098259-5.00021-4.
  • Kuila, U.; Prasad, M. Specific Surface Area and Pore-Size Distribution in Clays and Shales. Geophys. Prospect 2013, 61, 341–362. DOI: 10.1111/1365-2478.12028.
  • Kraepiel, A. M. L.; Keller, K.; Morel, F. M. M. A Model for Metal Adsorption on Montmorillonite. J. Colloid Interface Sci. 1999, 210, 43–54. DOI: 10.1006/jcis.1998.5947.
  • Bradbury, M. H.; Baeyens, B. Modelling the Sorption of Zn and Ni on Ca Montmorillonite. Geochim. Cosmochim. Acta 1999, 63, 325–336. DOI: 10.1016/S0016-7037(98)00281-6.
  • Es-Said, A.; Nafai, H.; Lamzougui, G.; Bouhaouss, A.; Bchitou, R. Comparative Adsorption Studies of Cadmium Ions on Phosphogypsum and Natural Clay. Sci. Afr. 2021, 13, e00960. DOI: 10.1016/j.sciaf.2021.e00960.
  • Kahkha, M. R. R.; Kaykhaii, M.; Kahkha, B. R.; Khosravi, H.; Tohidlou, E. Simultaneous Removal of Heavy Metals from Wastewater Using Modified Sodium Montmorillonite Nanoclay. Anal. Sci. 2020, 36, 1039–1043. DOI: 10.2116/analsci.19P300.
  • Rao, R. A. K.; M. Kashifuddin, M. Adsorption Studies of Cd(II) on Ball Clay: comparison with Other Natural Clays. Arab. J. Chem. 2016, 9, S1233–S1241. DOI: 10.1016/j.arabjc.2012.01.010.
  • Burham, N.; Sayed, M. Adsorption Behavior of Cd2+ and Zn2+ onto Natural Egyptian Bentonitic Clay. Minerals 2016, 6, 129. DOI: 10.3390/min6040129.
  • Wang, H.; Gao, B.; Wang, S.; Fang, J.; Xue, Y.; Yang, K. Removal of Pb(II), Cu(II), and Cd(II) from Aqueous Solutions by Biochar Derived from KMnO4 Treated Hickory Wood. Bioresour. Technol. 2015, 197, 356–362. DOI: 10.1016/j.biortech.2015.08.132.
  • Varghese, L. R.; Das, D.; Das, N. Adsorptive Removal of Nickel(II) Ions from Aqueous Environments Using Gum Based and Clay Based Polyaniline/Chitosan Nanobiocomposite Beads and Microspheres: Equilibrium, Kinetic, Thermodynamics and Ex-Situ Studies. Korean J. Chem. Eng. 2016, 33, 2114–2126. DOI: 10.1007/s11814-016-0071-0.
  • Feki, M.; Chaabouni, M.; Ayedi, H. F.; Heughebaert, J. C.; Vaillant, M. Statistical Analysis of the Removal of Aluminum and Magnesium Impurities from Wet-Process Phosphoric Acid. Can. J. Chem. Eng. 1987, 65, 132–136. DOI: 10.1002/cjce.5450650121.
  • Zermane, S.; Meniai, A.-H. Numerical Simulation of the Adsorption Process of Copper for Phosphoric Acid Purification. Desal. Water Treat. 2013, 51, 1429–1433. DOI: 10.1080/19443994.2012.714100.
  • Khomsi, A. E.; Ameni, G.; Kandri, N. I.; Abdelaziz, Z.; Sylvie, R. Moroccan Clays for Potential Use as Aluminosilicate Precursors for Geopolymer Synthesis. E3S Web of Conferences. 2021, 240, 03001. DOI: 10.1051/e3sconf/202124003001.
  • Urtiaga, A. M.; Alonso, A.; Ortiz, I.; Daoud, J. A.; El-Reefy, S. A.; Pérez de Ortiz, S.; Gallego, T. Comparison of Liquid Membrane Processes for the Removal of Cadmium from Wet Phosphoric Acid. J. Membr. Sci. 2000, 164, 229–240. DOI: 10.1016/S0376-7388(99)00197-0.
  • Qlihaa, A.; Dhimni, S.; Melrhaka, F.; Hajjaji, N.; Srhiri, A. Caractérisation Physico-Chimique D’une Argile Marocaine [Physico-Chemical Characterization of a Morrocan Clay]. J. Mater. Environ. Sci. 2016, 7, 1741–1750.
  • Daifullah, A. A. M.; Awwad, N. S.; El-Reefy, S. A. Purification of Wet Phosphoric Acid from Ferric Ions Using Modified Rice Husk. Chem. Eng. Process 2004, 43, 193–201. DOI: 10.1016/S0255-2701(03)00014-X.
  • Iannuccelli, V.; Maretti, E.; Sacchetti, F.; Romagnoli, M.; Bellini, A.; Truzzi, E.; Miselli, P.; Leo, E. Characterization of Natural Clays from Italian Deposits with Focus on Elemental Composition and Exchange Estimated by EDX Analysis: Potential Pharmaceutical and Cosmetic Uses. Clays Clay Miner. 2016, 64, 719–731. DOI: 10.1346/CCMN.2016.064038.
  • Choque-Quispe, D.; Ligarda-Samanez, C. A.; Ramos-Pacheco, B. S.; Solano-Reynoso, A. M.; Quispe-Marcatoma, J.; Choque-Quispe, Y.; Peralta-Guevara, D. E.; Martínez-Huamán, E. L.; Correa-Cuba, O.; Masco-Arriola, M. L.; et al. Formulation of Novel Composite (Activated Nanoclay/Hydrocolloid of Nostoc Sphaericum) and Its Application in the Removal of Heavy Metals from Wastewater. Polymers 2022, 14, 2803. DOI: 10.3390/polym14142803.
  • Šuránek, M.; Melichová, Z.; Kureková, V.; Kljajevíc, L.; Nenadovíc, S. Removal of Nickel from Aqueous Solutions by Natural Bentonites from Slovakia. Materials 2021, 14, 282. DOI: 10.3390/ma14020282.
  • Kwon, J.-S.; Yun, S.-T.; Lee, J.-H.; Kim, S.-O.; Jo, H. Y. Removal of Divalent Heavy Metals (Cd, Cu, Pb, and Zn) and Arsenic(III) from Aqueous Solutions Using Scoria: Kinetics and Equilibria of Sorption. J. Hazard Mater. 2010, 174, 307–313. DOI: 10.1016/j.jhazmat.2009.09.052.
  • Zhao, L. X.; Liang, J. L.; Li, N.; Xiao, H.; Chen, L. Z.; Zhao, R. S. Kinetic, Thermodynamic and Isotherm Investigations of Cu2+ and Zn2+ Adsorption on Li-Al Hydrotalcite-like Compound. Sci. Total. Environ. 2020, 716, 137120. DOI: 10.1016/j.scitotenv.2020.137120.
  • Georgieva, V. G.; Gonsalvesh, L.; Tavlieva, M. P. Thermodynamics and Kinetics of the Removal of Nickel (II) Ions from Aqueous Solutions by Biochar Adsorbent Made from Agro-Waste Walnut Shells. J. Mol. Liq. 2020, 312, 112788. DOI: 10.1016/j.molliq.2020.112788.
  • Le Van, S.; Chon, B. H. Chemical Flooding in Heavy-Oil Reservoirs: From Technical Investigation to Optimization Using Response Surface Methodology. Energies 2016, 9, 711. DOI: 10.3390/en9090711.
  • Kislik, V.; Eyal, A. Aqueous Hybrid Liquid Membrane Process for Metal Separation: Part II. Selectivity of Metals Separation from Wet-Process Phosphoric Acid. J. Membr. Sci. 2000, 169, 133–146. DOI: 10.1016/S0376-7388(99)00332-4.
  • Egbosiuba, T. C.; Abdulkareem, A. S.; Kovo, A. S.; Afolabi, E. A.; Tijani, J. O.; Roos, W. D. Enhanced Adsorption of as(V) and Mn(VII) from Industrial Wastewater Using Multi-Walled Carbon Nanotubes and Carboxylated Multi-Walled Carbon Nanotubes. Chemosphere 2020, 254, 126780. DOI: 10.1016/j.chemosphere.2020.126780.
  • Monser, L.; Ben Amor, M.; Ksibi, M. Purification of Wet Phosphoric Acid Using Modified Activated Carbon. Chem. Eng. Process. 1999, 38, 267–271. DOI: 10.1016/S0255-2701(99)00008-2.
  • Egbosiuba, T. C.; Abdulkareem, A. S. Highly Efficient as-Synthesized and Oxidized Multi-Walled Carbon Nanotubes for Copper(II) and Zinc(II) Ion Adsorption in a Batch and Fixed-Bed Process. J. Mater. Res. Technol. 2021, 15, 2848–2872. DOI: 10.1016/j.jmrt.2021.09.094.
  • Sdiri, A.; Higashi, T.; Chaabouni, R.; Jamoussi, F. Competitive Removal of Heavy Metals from Aqueous Solutions by Montmorillonitic and Calcareous Clays. Water Air Soil Pollut. 2012, 223, 1191–1204. DOI: 10.1007/s11270-011-0937-z.
  • Ismadji, S.; Soetaredjo, F. E.; Ayucitra, A. Clay Materials for Environmental Remediation, Springer Cham, New York City, 2015.
  • Uko, C. A.; Tijani, J. O.; Abdulkareem, S. A.; Mustapha, S.; Egbosiuba, T. C.; Muzenda, E. Adsorptive Properties of MgO/WO3 Nanoadsorbent for Selected Heavy Metals Removal from Indigenous Dyeing Wastewater. Process Saf. Environ. Prot. 2022, 162, 775–794. DOI: 10.1016/j.psep.2022.04.057.
  • El Halim, M.; Daoudi, L.; El Ouahabi, M.; Amakrane, J.; Fagel, N. Mineralogy and Firing Characteristics of Clayey Materials Used for Ceramic Purposes from Sale Region (Morocco). J. Mater. Environ. Sci. 2018, 9, 2263–2273.
  • Boulkroune, N.; Meniai, A. H. Modeling Purification of Phosphoric Acid Contaminated with Cadmium by Liquid-Liquid Extraction. Energy Procedia 2012, 18, 1189–1198. DOI: 10.1016/j.egypro.2012.05.134.
  • Egbosiuba, T. C.; Abdulkareem, A. S.; Kovo, A. S.; Afolabi, E. A.; Tijani, J. O.; Bankole, M. T.; Bo, S.; Roos, W. D. Adsorption of Cr(VI), Ni(II), Fe(II) and Cd(II) Ions by KIAgNPs Decorated MWCNTs in a Batch and Fixed Bed Process. Sci. Rep. 2021, 11, 11. DOI: 10.1038/s41598-020-79857-z.
  • Omer, O. S.; Hussein, M. A.; Hussein, B. H. M.; Mgaidi, A. Adsorption Thermodynamics of Cationic Dyes (Methylene Blue and Crystal Violet) to a Natural Clay Mineral from Aqueous Solution between 293.15 and 323.15 K. Arab. J. Chem. 2018, 11, 615–623. DOI: 10.1016/j.arabjc.2017.10.007.
  • Lamzougui, G.; Es-Said, A.; Nafai, H.; Chafik, D.; Bouhaouss, A.; Bchitou, R. Optimization and Modeling of Pb(II) Adsorption from Aqueous Solution onto Phosphogypsum by Application of Response Surface Methodology. Phosphorus Sulfur Silicon Relat. Elem. 2021, 196, 521–529. DOI: 10.1080/10426507.2020.1860985.
  • Chafik, D.; Bchitou, R.; Bouhaouss, A. Modeling and Optimization of Adsorption and Removal of Cd(II) from Aqueous Solution by Phosphogypsum. Asian J. Chem. 2014, 26, 8589–8592. DOI: 10.14233/ajchem.2014.18389.
  • Khataee, A. R.; Naseri, A.; Zarei, M.; Safarpour, M.; Moradkhannejhad, L. Chemometrics Approach for Determination and Optimization of Simultaneous Photooxidative Decolourization of a Mixture of Three Textile Dyes. Environ. Technol. 2012, 33, 2305–2317. DOI: 10.1080/09593330.2012.665495.
  • Es-Said, A.; Nafai, H.; Zerki, N.; Bchitou, R. Chemometrics Approach for Multi-Response Optimisation of Heavy Metals Zn(II), Cu(II) and Cd(II) Removal by Phosphogypsum: Ternary Aqueous Solution. Int. J. Environ. Anal. Chem. 2021, 1–15. DOI: 10.1080/03067319.2021.1901894.
  • Sargent, R. G. Verification and Validation of Simulation Models. Proceedings of the 2010 Winter Simulation Conference, 2010; pp. 166–183. DOI: 10.1109/WSC.2010.5679166.
  • Lee, D.-H.; Jeong, I.-J.; Kim, K.-J. A Desirability Function Method for Optimizing Mean and Variability of Multiple Responses Using a Posterior Preference Articulation Approach. Qual. Reliab. Eng. Int. 2018, 34, 360–376. DOI: 10.1002/qre.2258.
  • Egbosiuba, T. C.; Abdulkareem, A. S.; Kovo, A. S.; Afolabi, E. A.; Tijani, J. O.; Auta, M.; Roos, W. D. Ultrasonic Enhanced Adsorption of Methylene Blue onto the Optimized Surface Area of Activated Carbon: Adsorption Isotherm, Kinetics and Thermodynamics. Chem. Eng. Res. Des. 2020, 153, 315–336. DOI: 10.1016/j.cherd.2019.10.016.
  • Egbosiuba, T. C.; Egwunyenga, M. C.; Tijani, J. O.; Mustapha, S.; Abdulkareem, A. S.; Kovo, A. S.; Krikstolaityte, V.; Veksha, A.; Wagner, M.; Lisak, G. Activated Multi-Walled Carbon Nanotubes Decorated with Zero Valent Nickel Nanoparticles for Arsenic, Cadmium and Lead Adsorption from Wastewater in a Batch and Continuous Flow Modes. J. Hazard. Mater. 2022, 423, 126993. DOI: 10.1016/j.jhazmat.2021.126993.
  • Bezerra, M. A.; Santelli, R. E.; Oliveira, E. P.; Villar, L. S.; Escaleira, L. A. Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry. Talanta 2008, 76, 965–977. DOI: 10.1016/j.talanta.2008.05.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.