85
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Proximal interactions can direct selective sulfenate alkylation chemistry

ORCID Icon, ORCID Icon & ORCID Icon
Pages 543-548 | Received 01 Dec 2022, Accepted 19 Jan 2023, Published online: 03 Feb 2023

References

  • Jia, T.; Wang, M.; Liao, J. Chiral Sulfoxide Ligands in Asymmetric Catalysis. Top. Curr. Chem. 2019, 377, #8. DOI: 10.1007/s41061-019-0232-9.
  • Trost, B. M.; Rao, M. Development of Chiral Sulfoxide Ligands for Asymmetric Catalysis. Angew. Chem. Int. Ed. Engl. 2015, 54, 5026–5043. DOI: 10.1002/anie.201411073.
  • Han, J.; Soloshonok, V. A.; Klika, K. D.; Drabowicz, J.; Wzorek, A. Chiral sulfoxides: Advances in Asymmetric Synthesis and Problems with the Accurate Determination of the Stereochemical Outcome. Chem. Soc. Rev. 2018, 47, 1307–1350. DOI: 10.1039/C6CS00703A.
  • Wojaczyńska, E.; Wojaczyński, J. Modern stereoselective Synthesis of Chiral Sulfinyl Compounds. Chem. Rev. 2020, 120, 4578–4611. DOI: 10.1021/acs.chemrev.0c00002.
  • Dong, Z.-B.; Yang, M.-M.; Wang, S. Recent advances for Chiral Sulfoxides in Asymmetric Catalysis. Synthesis 2022, 54, 5168–5185. DOI: 10.1055/a-1930-6979.
  • Shadike, Z.; Tan, S.; Wang, Q.-C.; Lin, R.; Hu, E.; Qu, D.; Yang, X.-Q. Review on Organosulfur Materials for Rechargeable Lithium Batteries. Mater. Horiz. 2021, 8, 471–500. DOI: 10.1039/d0mh01364a.
  • Turkoglu, G.; Cinar, M. E.; Ozturk, T. Thiophene-Based Organic Semiconductors. Top. Curr. Chem 2017, 375, #84. DOI: 10.1007/s41061-017-0174-z.
  • Mustafa, M.; Winum, J.-Y. The importance of Sulfur-Containing Motifs in Drug Design and Discovery. Exp. Opin. Drug Discov. 2022, 17, 501–512. DOI: 10.1080/17460441.2022.2044783.
  • Surur, A. S.; Schulig, L.; Link, A. Interconnection of Sulfides and Sulfoxides in Medicinal Chemistry. Arch. Pharm. (Weinheim) 2019, 352, e1800248. DOI: 10.1002/ardp.201800248.
  • Devendar, P.; Yang, G.-F. Sulfur-Containing Agrochemicals. Top. Curr. Chem. 2017, 375, #82. DOI: 10.1007/s41061-017-0169-9.
  • Lamberth, C.; Walter, H.; Kessabi, F. M.; Quaranta, L.; Beaudegnies, R.; Trah, S.; Jeanguenat, A.; Cederbaum, F. The Significance of Organosulfur Compounds in Crop Protection: Current Examples from Fungicide Research. Phosphorus Sulfur Silicon Relat. Elem. 2015, 190, 1225–1235. DOI: 10.1080/10426507.2014.984033.
  • Miękus, N.; Marszałek, K.; Podlacha, M.; Iqbal, A.; Puchalski, C.; Świergiel, A. H. Health benefits of Plant-Derived Sulfur Compounds, Glucosinolates, and Organosulfur Compounds. Molecules 2020, 25, #3804. DOI: 10.3390/molecules25173804.
  • Sundaravelu, N.; Sangeetha, S.; Sekar, G. Metal-Catalyzed C–S Bond Formation Using Sulfur Surrogates. Org. Biomol. Chem. 2021, 19, 1459–1482. DOI: 10.1039/D0OB02320E.
  • Kaiser, D.; Klose, I.; Oost, R.; Neuhaus, J.; Maulide, N. Bond-Forming and -Breaking Reactions at Sulfur(IV): Sulfoxides, Sulfonium Salts, Sulfur Ylides, and Sulfinate Salts. Chem. Rev. 2019, 119, 8701–8780. DOI: 10.1021/acs.chemrev.9b00111.
  • Davies, T. Q.; Willis, M. C. Rediscovering Sulfinylamines as Reagents for Organic Synthesis. Chem. Eur. J. 2021, 27, 8918–8927. DOI: 10.1002/chem.202100321.
  • Peach, M. E. Thiols as Nucleophiles. In The Thiol Group, Patai, S., Ed. Wiley: New York, 1974; pp 721–784
  • Li, J.; Yang, S.; Wu, W.; Jiang, H. Recent developments in Palladium-Catalyzed C–S Bond Formation. Org. Chem. Front. 2020, 7, 1395–1417. DOI: 10.1039/D0QO00377H.
  • Riddell, A. B.; Smith, M. R. A.; Schwan, A. L. The generation and Reactions of Sulfenate Anions. An Update. J. Sulfur Chem. 2022, 43, 540–592. DOI: 10.1080/17415993.2022.2077086.
  • Okuyama, T. Mechanism of Nucleophilic Displacement Reactions of Sulphinic Acid Derivatives. In Patai’s Chemistry of Functional Groups, Patai, S., Ed. Wiley: Chichester, 1990; Chapter 22.
  • Baidya, M.; Kobayashi, S.; Mayr, H. Nucleophilicity and Nucleofugality of Phenylsulfinate (PhSO2−): a Key to Understanding Its Ambident Reactivity. J. Am. Chem. Soc. 2010, 132, 4796–4805. DOI: 10.1021/ja9102056.
  • Choudhuri, K.; Pramanik, M.; Mal, P. Noncovalent Interactions in C-S Bond Formation Reactions. J. Org. Chem. 2020, 85, 11997–12011. DOI: 10.1021/acs.joc.0c01534.
  • Parnes, R.; Narute, S.; Pappo, D. Thiol-Promoted Selective Addition of Ketones to Aldehydes. Org. Lett. 2014, 16, 5922–5925. DOI: 10.1021/ol502937n.
  • Dell’Erba, C.; Guanti, G.; Garbarino, G.; Novi, M.; Corallo, G. P. Solvent effect in the Reaction of n-Sulphonilsulphilimines with Benzenethiol. Tetrahedron 1981, 37, 795–799. DOI: 10.1016/S0040-4020(01)97700-2.
  • Chakraborti, A. K.; Sharma, L.; Nayak, M. K. Demand-Based Thiolate Anion Generation under Virtually Neutral Conditions: Influence of Steric and Electronic Factors on Chemo- and Regioselective Cleavage of Aryl Alkyl Ethers. J. Org. Chem. 2002, 67, 6406–6414. DOI: 10.1021/jo0256540.
  • Umierski, N.; Manolikakes, G. Arylation of Lithium Sulfinates with Diaryliodonium Salts: A Direct and Versatile Access to Arylsulfones. Org. Lett. 2013, 15, 4972–4975. DOI: 10.1021/ol402235v.
  • Friedrich, M.; Schulz, L.; Hofman, K.; Zangl, R.; Morgner, N.; Shaaban, S.; Manolikakes, G. Direct C–H-Sulfonylation of 6-Membered Nitrogen-Heteroaromatics. Tetrahedron Chem. 2022, 1, 100003. DOI: 10.1016/j.tchem.2021.100003.
  • Soderman, S. C.; Schwan, A. L. Sulfenate Substitution as a Complement and Alternative to Sulfoxidation in the Diastereoselective Preparation of Chiral β-Substituted β-Amino Sulfoxides. J. Org. Chem. 2013, 78, 1638–1649. DOI: 10.1021/jo302769b.
  • Toste, F. D.; LaRonde, F.; Still, I. W. J. Thiocyanate as a Versatile Synthetic Unit: efficient Conversion of ArSCN to Aryl Alkyl Sulfides and Aryl Thioesters. Tetrahedron Lett. 1995, 36, 2949–2952. DOI: 10.1016/0040-4039(95)00445-I.
  • Pilathottathil, F.; Unnikrishnan, S.; Kaliyamoorthy, A. Heteroarylation of Sulfenate Ions in Situ Generated from β-Sulfinyl Esters under Transition-Metal-Free Conditions. J. Org. Chem. 2022, 87, 14980–14990. DOI: 10.1021/acs.joc.2c02153.
  • Zong, L.; Ban, X.; Kee, C. W.; Tan, C.-H. Catalytic Enantioselective Alkylation of Sulfenate Anions to Chiral Heterocyclic Sulfoxides Using Halogenated Pentanidium Salts. Angew. Chem. 2014, 126, 12043–12047. DOI: 10.1002/anie.201407512.
  • Schwan, A. L.; Verdu, M. J.; Singh, S. P.; O'Donnell, J. S.; Ahmadi, A. N. Diastereoselective Alkylations of a Protected Cysteinesulfenate. J. Org. Chem. 2009, 74, 6851–6854. DOI: 10.1021/jo901021r.
  • Sandrinelli, F.; Perrio, S.; Averbuch-Pouchot, M.-T. Novel Approach to the Synthesis of Enantioenriched Sulfoxides. Highly Diastereoselective Alkylation of Sulfenate Anions with 1,4-Asymmetric Induction. Org. Lett. 2002, 4, 3619–3622. DOI: 10.1021/ol026563s.
  • Maezaki, N.; Yagi, S.; Ohsawa, S.; Ohishi, H.; Tanaka, T. Synthesis of Chiral Vinylic Sulfoxides by Pd-Catalyzed Asymmetric Sulfinylzincation. Tetrahedron 2003, 59, 9895–9906. DOI: 10.1016/j.tet.2003.10.037.
  • Schwan, A. L. A Computational Determination of the Origins of Diastereoselective Alkylations of a Cysteinesulfenate Anion. Eur. J. Org. Chem. 2019, 2019, 519–526. DOI: 10.1002/ejoc.201801053.
  • Geometry optimizations were performed using the M06-2X functional and the 6-311++G(d,p) basis set and the CPCM model (THF) for solvation. See Ref 34 for full details.
  • All 3D Graphics were rendered from Gaussian log files using CYLview, 1.0b; Legault, C. Y., Université de Sherbrooke, 2009 (http://www.cylview.org).
  • Two transition states were found for each pro-R and pro-S mode of S-benzylation; the lowest energy structures were selected for Figure 4.
  • Durant, A. G.; Nicol, E. A.; McInnes, B. M.; Schwan, A. L. A DFT Examination of the Role of Proximal Boron Functionalities in the S-Alkylation of Sulfenic Acid Anions. Org. Biomol. Chem. 2022, 20, 649–657. DOI: 10.1039/D1OB02083H.
  • Liu, C. T.; Benkovic, S. J. Capturing a Sulfenic Acid with Arylboronic Acids and Benzoxaborole. J. Am. Chem. Soc. 2013, 135, 14544–14547. DOI: 10.1021/ja407628a.
  • The computations utilized the B3LYP DFT functional and the 6-311++G(d,p) basis set. The CPCM model (THF) was employed for solvation. See Ref 38 for full details.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.