110
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

One-pot synthesis and fluorescent property of novel syringaldehyde α-aminophosphonate derivatives

, , , , & ORCID Icon
Pages 607-614 | Received 14 Nov 2022, Accepted 30 Jan 2023, Published online: 16 Mar 2023

References

  • Naydenova, E. D.; Todorov, P. T.; Troev, K. D. Recent Synthesis of Aminophosphonic Acids as Potential Biological Importance. Amino Acids 2010, 38, 23–30. DOI: 10.1007/s00726-009-0254-7.
  • Kudzin, M. H.; Kudzin, Z. H.; Drabowicz, J. Thioureidoalkylphosphonates in the Synthesis of 1-Aminoalkylphosphonic Acids. The Ptc-Aminophosphonate Method. Arkivoc. 2011, 2011, 227–269. DOI: 10.3998/ark.5550190.0012.617.
  • Ali, O. M.; Alotaibi, M. T.; Zaki, Y. H.; Amer, H. H. Design, Synthesis, and Spectroscopic Studies of Some New α-Aminophosphonate Analogues Derived from 4-Hydroxybenzaldehyde with Special Reference to Anticancer Activity. Drug Des. Devel. Ther. 2022, 16, 2589–2599. DOI: 10.2147/DDDT.S357998.
  • Bouamrane, O. L.; Hellal, A.; Hachama, K.; Touafri, L.; Haddadi, I.; Layaida, H.; Kirouani, I.; Hassani, A.; Mersellem, M.; Madani, A.; Bensouici, C. Effect of the Bifunctionalization of AminomEthylphosphonic Acid on the Structural, Electronic, Vibrational, Thermodynamic and Antioxidant Activity: Microwave-Assisted Synthesis, Density Functional Theory Studies and DPPH Radical Scavenging Activity. J. Mol. Struct. 2022, 1250, 131714–131720. DOI: 10.1016/j.molstruc.2021.131714.
  • Wang, J.; Ansari, M. F.; Lin, J.-M.; Zhou, C.-H. Design and Synthesis of Sulfanilamide Aminophosphonates as Novel Antibacterial Agents towards Escherichia coli. Chin. J. Chem. 2021, 39, 2251–2263. DOI: 10.1002/cjoc.202100165.
  • Sabry, E.; Mohamed, H. A.; Ewies, E. F.; Kariuki, B. M.; Darwesh, O. M.; Bekheit, M. S. Microwave-Assisted Synthesis of Novel Sulfonamide-Based Compounds Bearing α-Aminophosphonate and Their Antimicrobial Properties. J. Mol. Struct. 2022, 1266, 133553. DOI: 10.1016/j.molstruc.2022.133553.
  • Randolph, J. T.; Li, T.; Chris Krueger, A.; Heyman, H. R.; Chen, H.-J.; Bow, D. A.; Van Handel, C.; Peterkin, V.; Carr, R. A.; Stolarik, D.; et al. Discovery of 2-Aminoisobutyric Acid Ethyl Ester (AIBEE) Phosphoramidate Prodrugs for Delivering Nucleoside HCV NS5B Polymerase Inhibitors. Bioorg. Med. Chem. Lett. 2020, 30, 126986. DOI: 10.1016/j.bmcl.2020.126986.
  • Tian, J.; Ji, R.-J.; Wang, H.; Li, S.-Y.; Zhang, G.-P. Discovery of Novel α-Aminophosphonates with Hydrazone as Potential Antiviral Agents Combined with Active Fragment and Molecular Docking. Front. Chem. 2022, 10, 1–7. DOI: 10.3389/fchem.2022.911453.
  • Tolgyesi, A.; Toth, E.; Farkas, T.; Simon, A.; Dernovics, M.; Balint, M. Determination of Aminophosphonate Herbicides in Glutamate Loaded Spice Mix by LC-IDMS and Method Extension to Other Food Matrices. Food Anal. Methods 2022, 15, 2012–2025. DOI: 10.1007/s12161-022-02248-9.
  • Ren, Z.-L.; Zhang, J.; Li, H.-D.; Chu, M.-J.; Zhang, L.-S.; Yao, X.-K.; Xia, Y.; Lv, X.-H.; Cao, H.-Q. Design, Synthesis and Biological Evaluation of α-Aminophosphonate Derivatives Containing a Pyrazole Moiety. Chem. Pharm. Bull. (Tokyo) 2016, 64, 1755–1762. DOI: 10.1248/cpb.c16-00622.
  • Haddadi, I.; Hellal, A.; Kirouani, I.; Layaida, H.; Bensouici, C. Microwave-Assisted Synthesis, DFT Theoretical Study and Biological Activities Evaluation of Two Phosphonylated M-Toluidine Derivatives. J. Mol. Struct. 2022, 1251, 131948. DOI: 10.1016/j.molstruc.2021.131948.
  • Guo, C.-W.; Wu, S.-H.; Chen, F.-L.; Han, Z.-Y.; Fu, X.-H.; Wan, R. Synthesis, Crystal Structure, and Insecticidal Evaluation of Novel Aryl Pyrazole Compounds Containing Aminophosphonate Moiety. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 1250–1255. DOI: 10.1080/10426507.2016.1166365.
  • Da Silva, E. S.; Burrows, H. D.; Wong-Wah-Chung, P.; Sarakha, M. β-Cyclodextrin as a Photostabilizer of the Plant Growth Regulator 2-(1-Naphthyl) Acetamide in Aqueous Solution. J. Incl. Phenom. Macrocycl. Chem. 2014, 79, 329–336. DOI: 10.1007/s10847-013-0355-5.
  • Zanela, T. M. P.; Latczuk, I. F.; Muniz, E. C.; Almeida, C. AP. Synthesis of Bolaform Surfactants from Recycled Poly(Ethylene Terephthalate). Waste. J. Clean. Prod. 2021, 320, 128762. DOI: 10.1016/j.jclepro.2021.128762.
  • Li, S.-Y.; Liu, R.; Han, X.; Ge, C.-H.; Zhang, X.-D. Diethyl α-Aminophosphonate Containing Lubricating Additives Synthesized from (3-Aminophenyl)Boronic Acid Pinacol Ester. Inorg. Chem. Commun. 2022, 140, 109477–109477. DOI: 10.1016/j.inoche.2022.109477.
  • Khodyrev, Y. P.; Nikitin, E. N.; Shumatbaev, G. G.; Sinyshin, K. O.; Terenzhev, D. A.; Ermakova, A. M. Inhibition of CO2 Corrosion of Mild Steel in a Highly Mineralized Saline Solution with a New Synthesized α-Aminophosphonate. Int. J. Corros. Scale. Inhib. 2019, 8, 312–328. DOI: 10.17675/2305-6894-2019-8-2-13.
  • Canepa, P.; Gonella, G.; Pinto, G.; Grachev, V.; Canepa, M.; Cavalleri, O. Anchoring of Aminophosphonates on Titanium Oxide for Biomolecular Coupling. J. Phys. Chem. C. 2019, 123, 16843–16850. DOI: 10.1021/acs.jpcc.9b04077.
  • Nie, X.-Q.; Zhang, Y.-J.; Jiang, Y.-T.; Pan, N.; Liu, C.; Wang, J.-L.; Ma, C.-Y.; Xia, X.; Liu, M.-X.; Zhang, H.-P.; et al. Efficient Extraction of U(VI) from Uranium Enrichment Process Wastewater by Amine-Aminophosphonate-Modified Polyacrylonitrile Fibers. Sci. Total Environ. 2022, 831, 154743–154712. DOI: 10.1016/j.scitotenv.2022.154743.
  • Tumurbaatar, O.; Lazarova, H.; Popova, M.; Mitova, V.; Shestakova, P.; Koseva, N. CO2 Adsorption on the N- and P-Modified Mesoporous Silicas. Nanomaterials-Basel 2022, 12, 1224. DOI: 10.3390/nano12071224.
  • Stanfifield, M. K.; Carrascal, J.; Henderson, L. C.; Eyckens, D. J. α-Aminophosphonate Derivatives for Enhanced Flame Retardant Properties in Epoxy Resin. Materials 2021, 14, 1–10. DOI: 10.3390/ma14123230.
  • Hkiri, S.; Touil, S.; Samarat, A.; Semeril, D. Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling with α-Aminophosphonates Based on 1,3,4-Oxadiazole as Ligands. CR Chim. 2022, 25, 53–65. DOI: 10.5802/crchim.144.
  • Huang, K.-B.; Wang, F.-Y.; Feng, H.-W.; Luo, H.-J.; Long, Y.; Zou, T.-T.; Chan, A. S. C.; Liu, R.; Zou, H.-H.; Chen, Z.-F.; et al. An Aminophosphonate Ester Ligand-Containing Platinum(II) Complex Induces Potent Immunogenic Cell Death in Vitro and Elicits Effective anti-Tumour Immune Responses in Vivo. Chem. Commun. (Camb) 2019, 55, 13066–13069. DOI: 10.1039/c9cc06563f.
  • Soyekwo, F.; Liu, C.-K.; Zhao, L.-H.; Wen, H.; Huang, W.; Cai, C.-J.; Kanagaraj, P.; Hu, Y.-X. Nanofiltration Membranes with Metal Cation-Immobilized Aminophosphonate Networks for Efficient Heavy Metal Ion Removal and Organic Dye Degradation. ACS Appl. Mater. Interfaces 2019, 11, 30317–30331. DOI: 10.1021/acsami.9b10208.
  • Koszelewski, D.; Kowalczyk, P.; Śmigielski, P.; Samsonowicz-Górski, J.; Kramkowski, K.; Wypych, A.; Szymczak, M.; Ostaszewski, R. Relationship between Structure and Antibacterial Activity of α-Aminophosphonate Derivatives Obtained via Lipase-Catalyzed Kabachnik-Fields Reaction. Materials 2022, 15, 3846. DOI: 10.3390/ma15113846.
  • Uparkar, J. J.; Dhavan, P. P.; Jadhav, B. L.; Pawar, S. D. Design, Synthesis and Biological Evaluation of Furan Based α-Aminophosphonate Derivatives as anti-Alzheimer Agent. J. Iran. Chem. Soc. 2022, 19, 3103–3116. DOI: 10.1007/s13738-022-02515-w.
  • Packialakshmi, P.; Gobinath, P.; Ali, D.; Alarifi, S.; Alsaiari, N.; Idhayadhulla, A.; Surendrakumar, R. Synthesis and Characterization of a Minophosphonate Containing Chitosan Polymer Derivatives: Investigations of Cytotoxic Activity and in Silico Study of SARS-CoV-19. Polymers 2021, 13, 1046. DOI: 10.3390/polym13071046.
  • Kuśnierz, A.; Chmielewska, E. Synthesis of Fluorescent Aminophosphonates by Green Chemistry Procedures. Phosphorus Sulfur Silicon Relat. Elem. 2017, 192, 700–705. DOI: 10.1080/10426507.2017.1308934.
  • (a) Neiber, R. R.; Galhoum, A. A.; Sayed, E.; Guibal, E.; Xin, J.-Y.; Lu, X.-M. Selective Lead (II) Sorption Using Aminophosphonate-Based Sorbents: Effect of Amine Linker, Characterization and Sorption Performance. Chem. Eng. J. 2022, 442,136300–17. (b) Rashad, M. M.; Sayed, E.; Galhoum, A. A.; Abdeen, M. M.; Mira, H. I.; Elshehy, E. A.; Zhang, S.-J.; Lu, X.-M.; Xin, J.-Y.; Guibal, E. Synthesis of α-Aminophosphonate Based Sorbents-Influence of Inserted Groups (Carboxylic vs. Amine) on Uranyl Sorption, Chem. Eng. J. 2021, 421, 1–66. DOI: 10.1016/j.cej.2020.127830. (c) Morshedy, A. S.; Galhoum, A. A.; Abdel Aleem, A. A. H.; Shehab El-din, M. T.; Okaba, D. M.; Mostafa, M. S.; Mira, H. I.; Yang, Z.; El-Sayed, I. E. T. Functionalized Aminophosphonate Chitosan-Magnetic Nanocomposites for Cd(II) Removal from Aqueous Solutions: Performance and Mechanisms of Sorption. Appl. Surf. Sci. 2021, 561, 1–14. DOI: 10.1016/j.apsusc.2021.150069. (d) Fouda, S. R.; El-Sayed, I. E.; Attia, N. F.; Abdeen, M. M.; Abdel Aleem, A. A. H.; Nassar, I. F.; Mira, H. I.; Gawad, E. A.; Kalam, A.; Al-Ghamdi, A. A.; Galhoum, A. A. Mechanistic Study of Hg(II) Interaction with Three Different α-Aminophosphonate Adsorbents: Insights from Batch Experiments and Theoretical Calculations. Chemosphere 2022, 304, 1–19. DOI: 10.1016/j.chemosphere.2022.135253. DOI: 10.1016/j.cej.2022.136300.
  • Wu, W.-X.; Li, F.; Yao, B.-J.; Ding, L.-G.; Kan, J.-L.; Liu, F.; Zhao, G.-Y.; Wang, S.; Dong, Y.-B. Synthesis of Covalent Organic Frameworks via Kabachnik-Fields Reaction for Water Treatment. J. Hazard Mater. 2022, 433, 128831. DOI: 10.1016/j.jhazmat.2022.128831.
  • Li, B.; Liu, J.-L.; Xu, H. Synthesis of Polyaminophosphonated-Functionalized Hydrochar for Efficient Sorption of Pb(II). Environ. Sci. Pollut. Res. Int. 2022, 29, 49808–49815. DOI: 10.1007/s11356-022-19350-4.
  • Martinez-Toto, E. I.; Ordonez, M.; Morales-Solis, J. C.; Flores-Alamo, M. Diastereoselective Phosphonylation of Chiral Cyclic Imines for the Synthesis of Phosphoproline Derivatives. Eur. J. Org. Chem. 2022, 24, e202200461. DOI: 10.1002/ejoc.202200461.
  • Maestro, A.; Marigorta, E. M.; Palacios, F.; Vicario, J. α-Iminophosphonates: Useful Intermediates for Enantioselective Synthesis of α-Aminophosphonates. Asian J. Org. Chem. 2020, 9, 538–548. DOI: 10.1002/ajoc.202000039.
  • Kazemi, F.; Shariati, Y.; Kaboudin, B. Highly Efficient One-Pot Aerobic Synthesis of α-Aminophosphonate from Alcohols: Dual Catalytic Effect of Tetrabutylammonium Tribromide (TBATB). ChemistrySelect. 2022, 7, e202104220. DOI: 10.1002/slct.202104220.
  • Alherech, M.; Omolabake, S.; Holland, C. M.; Klinger, G. E.; Hegg, E. L.; Stahl, S. S. From Lignin to Valuable Aromatic Chemicals: Lignin Depolymerization and Monomer Separation via Centrifugal Partition Chromatography. ACS Cent. Sci. 2021, 7, 1831–1837. DOI: 10.1021/acscentsci.1c00729.
  • Mota, M. I. F.; Rodrigues Pinto, P. C.; Loureiro, J. M.; Rodrigues, A. E. Recovery of Vanillin and Syringaldehyde from Lignin Oxidation: A Review of Separation and Purification Processes. Sep. Purif. Rev. 2016, 45, 227–259. DOI: 10.1080/15422119.2015.1070178.
  • Tarabanko, V. E.; Chelbina, Y. V.; Kudryashev, A. V.; Tarabanko, N. V. Separation of Vanillin and Syringaldehyde Produced from Lignins. Sep. Sci. Technol. 2013, 48, 127–132. DOI: 10.1080/01496395.2012.673671.
  • Ibrahim, M. N. M.; Sriprasanthi, R. B.; Shamsudeen, S.; Adam, F.; Bhawani, S. A. Syringaldehyde: Review. Biores 2012, 7, 4377–4399.
  • Li, Y.-X.; Zhu, J.-P.; Zhang, Z.-J.; Qu, Y.-S. Preparation of Syringaldehyde from Lignin by Catalytic Oxidation of Perovskite-Type Oxides. ACS Omega 2020, 5, 2107–2113. DOI: 10.1021/acsomega.9b02379.
  • Tarabanko, V. E.; Tarabanko, N. Catalytic Oxidation of Lignins into the Aromatic Aldehydes: General Process Trends and Development Prospects. IJMS 2017, 18, 2421–2429. DOI: 10.3390/ijms18112421.
  • Gonçalvesa, I. C.; Guilhermea, V.; Ferraa, M. I.; Marquesa, A. M.; Pinheiro, H. M. Influence of Co-Substrates on Anaerobic Thermophilic Degradation of Syringaldehyde. J. Clean Prod. 2020, 275, 1–7. DOI: 10.1016/j.jclepro.2020.122577.
  • Wu, J.-Y.; Fu, Y.-S.; Lin, K.-H.; Huang, X.; Chen, Y.-J.; Lai, D.; Kang, N.; Huang, L.-Y.; Weng, C.-F. A Narrative Review: The Pharmaceutical Evolution of Phenolic Syringaldehyde. Biomed. Pharmacother. 2022, 153, 113339. DOI: 10.1016/j.biopha.2022.113339.
  • Wu, Y.-C.; Chang, G.-Y.; Ko, F.-N.; Teng, C.-M. Bioactive Constitutents from the Stems of Annona Montana. Planta Med. 1995, 61, 146–149. DOI: 10.1055/s-2006-958035.
  • Yi, B.; Hu, L.-F.; Mei, W.-L.; Zhou, K.-B.; Wang, H.; Luo, Y.; Wei, X.-Y.; Dai, H.-F. Antioxidant Phenolic Compounds of Cassava (Manihot esculenta) from Hainan. Molecules 2011, 16, 10157–10167. DOI: 10.3390/molecules161210157.
  • Lv, Q.-H.; Chu, X.; Yao, X.-Y.; Ma, K.-L.; Zhang, Y.; Deng, X.-M. Inhibition of the Type III Secretion System by Syringaldehyde Protects Mice from Salmonella Enterica Serovar Typhimurium. J. Cell. Mol. Med. 2019, 23, 4679–4688. DOI: 10.1111/jcmm.14354.
  • Kuo, S.-C.; Chung, H.-H.; Huang, C.-H.; Cheng, J.-T. Decrease of Hyperglycemia by Syringaldehyde in Diabetic Rats. Horm. Metab. Res. 2014, 46, 8–13. DOI: 10.1055/s-0033-1351274.
  • Farah, M. H.; Samuelsson, G. Pharmacologically Active Phenylpropanoids from Senra Incana. Planta Med 1992, 58, 14–18. DOI: 10.1055/s-2006-961380.
  • Rajendiran, N.; Balasubramanian, T. Dual Fluorescence of Syringaldazine. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2007, 68, 894–904. DOI: 10.1016/j.saa.2007.01.004.
  • Bazyl, O. K.; Artyukhov, V. Y.; Mayer, G. V.; Pershukevich, P. P.; Bel’kov, M. V.; Shadyro, O. I.; Samovich, S. N. Spectral-Luminescent Properties of Charged Forms of Some Substituted Benzaldehydes. Opt. Spectrosc. 2020, 128, 473–480. DOI: 10.1134/S0030400X20040037.
  • Zhang, X.-P.; Jin, G.-Y.; Chen, Z.-S.; Wu, Y.-J.; Li, Q.; Liu, P.-F.; Xi, G.-L. An Efficient Turn-on Fluorescence Chemosensor System for Zn(II) Ions Detection and Imaging in Mitochondria. J. Photochem. Photobiol. B 2022, 234, 112485. DOI: 10.1016/j.jphotobiol.2022.112485.
  • Iwabuchi, N.; Sakano, Y.; Takiguchi, H.; Takihara, H.; Sunairi, M.; Matsufuji, H. Development of a Simple Nonbiological Method for Converting Lignin-Derived Aromatics into Nonaromatic Polymeric Substances with Fluorescent Activity. ACS Sustainable Chem. Eng. 2016, 4, 4411–4416. DOI: 10.1021/acssuschemeng.6b01009.
  • Sonker, E.; Tiwari, R.; Kumar, K.; Krishnamoorthi, S. Electrical Properties of New Polyazomethines. SN Appl. Sci. 2020, 2, 1123. DOI: 10.1007/s42452-020-2910-1.
  • Tang, J.; Zhang, J.; Zhang, Y.-F.; Xiao, Y.-M.; Shi, Y.-L.; Chen, Y.-H.; Ding, L.; Xu, W. Influence of Group Modification at the Edges of Carbon Quantum Dots on Fluorescent Emission. Nanoscale Res. Lett. 2019, 14, 241. DOI: 10.1186/s11671-019-3079-7.
  • Hou, R.; Zhao, B.; Xia, Y.; Li, D. Organic Fluorescent Compounds That Display Efficient Aggregation-Induced Emission Enhancement and Intramolecular Charge Transfer. Molecules 2018, 23, 1446–1448. DOI: 10.3390/molecules23061446.
  • Marfin, Y. S.; Banakova, E. A.; Merkushev, D. A.; Usoltsev, S. D.; Churakov, A. V. Effects of Concentration on Aggregation of BODIPY-Based Fluorescent Dyes Solution. J. Fluoresc. 2020, 30, 1611–1621. DOI: 10.1007/s10895-020-02622-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.