89
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Environmentally benign synthesis, molecular docking study, and ADME prediction of some novel aryl sulfones containing cyclic imide moiety as antimicrobial agents

ORCID Icon, , , , &
Pages 955-966 | Received 05 May 2021, Accepted 30 Apr 2023, Published online: 12 May 2023

References

  • Lushniak, B. D. Antibiotic Resistance: A Public Health Crisis. Public Health Rep. 2014, 129, 314–316. DOI: 10.1177/003335491412900402.
  • Blair, J. M. A.; Webber, M. A.; Baylay, A. J.; Ogbolu, D. O.; Piddock, L. J. Molecular Mechanisms of Antibiotic Resistance. Nat. Rev. Microbiol. 2015, 13, 42–51. DOI: 10.1038/nrmicro3380.
  • Parvaiz, N.; Ahmad, F.; Yu, W.; MacKerell, A. D.; Azam, S. S. Discovery of Beta-Lactamase CMY-10 Inhibitors for Combination Therapy against Multi-Drug Resistant Enterobacteriaceae. PLoS One 2021, 16, e0244967. DOI: 10.1371/journal.pone.0244967.
  • Laronze, M.; Boisbrun, M.; Léonce, S.; Pfeiffer, B.; Renard, P.; Lozach, O.; Meijer, L.; Lansiaux, A.; Bailly, C.; Sapi, J.; Laronze, J.-Y. Synthesis and Anticancer Activity of New Pyrrolocarbazoles and Pyrrolo-β-Carbolines. Bioorg. Med. Chem. 2005, 13, 2263–2283. DOI: 10.1016/j.bmc.2004.12.045.
  • Amr, A. E. G. E.; Sabry, N. M.; Abdulla, M. M. Synthesis, Reactions, and anti-Inflammatory Activity of Heterocyclic Systems Fused to a Thiophene Moiety Using Citrazinic Acid as Synthon. Monatsh. Chem. 2007, 138, 699–707. DOI: 10.1007/s00706-007-0651-0.
  • Anizon, F.; Belin, L.; Moreau, P.; Sancelme, M.; Voldoire, A.; Prudhomme, M.; Ollier, M.; Sevère, D.; Riou, J. F.; Bailly, C.; et al. Syntheses and Biological Activities (Topoisomerase Inhibition and Antitumor and Antimicrobial Properties) of Rebeccamycin Analogues Bearing Modified Sugar Moieties and Substituted on the Imide Nitrogen with a Methyl Group. J. Med. Chem. 1997, 40, 3456–3465. DOI: 10.1021/jm9702084.
  • Zentz, F.; Valla, A.; Le Guillou, R.; Labia, R.; Mathot, A. G.; Sirot, D. Synthesis and Antimicrobial Activities of N-Substituted Imides. Farmaco 2002, 57, 421–426. DOI: 10.1016/S0014-827X(02)01217-X.
  • Abdel-Aziz, A. A.-M. Novel and Versatile Methodology for Synthesis of Cyclic Imides and Evaluation of Their Cytotoxic, DNA Binding, Apoptotic Inducing Activities and Molecular Modeling Study. Eur. J. Med. Chem. 2007, 42, 614–626. DOI: 10.1016/j.ejmech.2006.12.003.
  • Abdel-Aziz, A. A.-M.; ElTahir, K. E. H.; Asiri, Y. A. Synthesis, anti-Inflammatory Activity and COX-1/COX-2 Inhibition of Novel Substituted Cyclic Imides. Part 1: Molecular Docking Study. Eur. J. Med. Chem. 2011, 46, 1648–1655. DOI: 10.1016/j.ejmech.2011.02.013.
  • Abdel-Aziz, A. A.-M.; El-Azab, A. S.; Attia, S. M.; Al-Obaid, A. M.; Al-Omar, M. A.; El-Subbagh, H. I. Synthesis and Biological Evaluation of Some Novel Cyclic-Imides as Hypoglycaemic, Anti-Hyperlipidemic Agents. Eur. J. Med. Chem. 2011, 46, 4324–4329. DOI: 10.1016/j.ejmech.2011.07.002.
  • Nettleton, D. E.; Doyle, T. W.; Krishnan, B.; Matsumoto, G. K.; Clardy, J. Isolation and Structure of Rebeccamycin – A New Antitumor Antibiotic from Nocardia Aerocoligenes. Tetrahedron Lett. 1985, 26, 4011–4014. DOI: 10.1016/S0040-4039(00)89280-1.
  • Bush, J. A.; Long, B. H.; Catino, J. J.; Bradner, W. T.; Tomita, K. Production and Biological Activity of Rebeccamycin, a Novel Antitumor Agent. J. Antibiot. 1987, 40, 668–678. DOI: 10.7164/antibiotics.40.668.PMID3112080.
  • Cechinel Filho, V.; Campos, F.; Corrêa, R.; Yunes, R.; Nunes, R. Chemical Aspects and Therapeutic Potential of Cyclic Imides: A Literature Review. Quím. Nova 2003, 26, 230–241. DOI: 10.1590/S0100-40422003000200016.
  • Kamiński, K.; Obniska, J.; Chlebek, I.; Wiklik, B.; Rzepka, S. Design, Synthesis and Anticonvulsant Properties of New N-Mannich Bases Derived from 3-Phenylpyrrolidine-2,5-Diones. Bioorg. Med. Chem. 2013, 21, 6821–6830. DOI: 10.1016/j.bmc.2013.07.029.
  • Cybulski, J.; Chilmonczyk, Z.; Szelejewski, W.; Wojtasiewicz, K.; Wrobel, J. An Efficient Synthesis of Buspirone and Its Analogues. Arch. Pharm. Pharm. Med. Chem. 1992, 325, 313–315. DOI: 10.1002/ardp.19923250513.
  • Grib, S.; Berredjem, M.; Otmane Rachedi, K.; Djouad, S. E.; Bouacida, S.; Bahadi, R.; Ouk, T. S.; Kadri, K.; Ben Hadda, T.; Belhani, B. Novel N-Sulfonylphthalimides: Efficient Synthesis, X-Ray Characterization, Spectral Investigations, POM Analyses, DFT Computations and Antibacterial Activity. J. Mol. Struct. 2020, 1217, 128423. DOI: 10.1016/j.molstruc.2020.128423.
  • Abdel-Aziz, A. M.; El-Azab, A. S.; Ceruso, M.; Supuran, C. T. Carbonic Anhydrase Inhibitory Activity of Sulfonamides and Carboxylic Acids Incorporating Cyclic Imide Scaffolds. Bioorg. Med. Chem. Lett. 2014, 24, 5185–5189. DOI: 10.1016/j.bmcl.2014.09.076.
  • Al-Sanea, M. M.; Elkamhawy, A.; Paik, S.; Lee, K.; El Kerdawy, A. M.; Syed Nasir Abbas, B.; Joo Roh, E.; Eldehna, W. M.; Elshemy, H. A. H.; Bakr, R. B.; et al. Sulfonamide-Based 4-Anilinoquinoline Derivatives as Novel Dual Aurora Kinase (AURKA/B) Inhibitors: Synthesis, Biological Evaluation and In Silico Insights. Bioorg. Med. Chem. 2020, 28, 115525–115533. DOI: 10.1016/j.bmc.2020.115525.
  • Abraham, D. J.; (Ed.), Burger’s Medicinal Chemistry and Drug Discovery; John Wiley & Sons: Hoboken, NJ, 2003.
  • Gadad, A. K.; Mahajanshetti, C. S.; Nimbalkar, S.; Raichurkar, A. Synthesis and Antibacterial Activity of Some 5-Guanylhydrazone/Thiocyanato-6-Arylimidazo [2,1-b]-1,3,4-Thiadiazole-2-Sulfonamide Derivatives. Eur. J. Med. Chem. 2000, 35, 853–857. DOI: 10.1016/S0223-5234(00)00166-5.
  • Zani, F.; Vicini, P. Antimicrobial Activity of Some 1, 2-Benzisothiazoles Having a Benzenesulfonamide Moiety. Arch. Pharm. Pharm. Med. Chem. 1998, 331, 219–223. DOI: 10.1002/(sici)1521-4184(199806)331:6 < 219::aid-ardp219 > 3.0.co;2-u.
  • Majumdar, K. C.; Mondal, S.; De, N. Synthesis of Polycyclic Sultams by Palladium-Catalyzed Intramolecular Cyclization. Synthesis 2009, 2009, 3127–3135. DOI: 10.1055/s-0029-1216888.
  • Dhumad, A. M.; Jassem, A. M.; Alharis, R. A.; Almashal, F. A. Design, Cytotoxic Effects on Breast Cancer Cell Line (MDA-MB 231), and Molecular Docking of Some Maleimide-Benzenesulfonamide Derivatives. J. Indian. Chem. Soc. 2021, 98, 100055–100064. DOI: 10.1016/j.jics.2021.100055.
  • Shaki, H.; Khosravi, A.; Gharanjig, K.; Mahboubi, A. Synthesis and Biological Properties of Novel Cationic Fluorescent Dye. Int. J. Tech. Res Appl. 2015, 29, 103–106. e-ISSN: 2320–8163.
  • Jan, M. S.; Sajjad, A.; Fida, H.; Ashfaq, A.; Fawad, M.; Umer, R.; Obaid-Ur-Rahman, A.; Farhat, U.; Muhammad, A.; Sadiq, A. Design, Synthesis, In-Vitro, In-Vivo and In-Silico Studies of Pyrrolidine-2,5-Dione Derivatives as Multitarget Anti-Inflammatory Agents. Eur. J. Med. Chem. 2020, 186, 111863–111868. DOI: 10.1016/j.ejmech.2019.111863.
  • Jafari, E.; Jarah-Najafabadi, N. T.; Jahanian-Najafabadi, A.; Poorirani, S.; Hassanzadeh, F.; Sadeghian-Rizi, S. Synthesis and Evaluation of Antimicrobial Activity of Cyclic Imides Derived from Phthalic and Succinic Anhydrides. Res. Pharm. Sci. 2017, 12, 526–534. DOI: 10.4103/1735-5362.217433.
  • Deshpande, S. R.; Maybhate, S. P.; Likhite, A. P.; Chaudhary, P. M. A Facile Synthesis of N-Substituted Maleimides. Indian J. Chem. 2010, 49B, 487–488. ISSN: 0975–0975.
  • Haval, K. P.; Mhaske, S. B.; Argade, N. P. Cyanuric Chloride: Decent Dehydrating Agent for an Exclusive and Efficient Synthesis of Kinetically Controlled Isomaleimides. Tetrahedron 2006, 62, 937–942. DOI: 10.1016/j.tet.2005.10.027.
  • Le, Z. G.; Chen, Z. C.; Hu, Y.; Zheng, Q. G. Organic Reactions in Ionic Liquids: Ionic Liquid-Promoted Efficient Synthesis of N-Alkyl and N-Arylimides. Synthesis 2004, 2004, 995–998. DOI: 10.1055/s-2004-822337.
  • Arif, R.; Nayab, P. S.; Rahisuddin, P. Synthesis, Characterization, DNA Binding, Antibacterial, and Antioxidant Activity of New Bis-Phthalimides. Russ. J. Gen. Chem. 2016, 86, 1374–1380. DOI: 10.1134/S1070363216060232.
  • Paterson, M. J.; Eggleston, I. M. Convenient Preparation of N-Maleoyl Amino Acid Succinimido Esters Using N-Trifluoroacetoxysuccinimide. Synth. Commun. 2008, 38, 303–308. DOI: 10.1080/00397910701750151.
  • Kondo, T.; Nomura, M.; Ura, Y.; Wada, K.; Mitsudo, T. Ruthenium-Catalyzed [2 + 2 + 1] Cocyclization of Isocyanates, Alkynes, and CO Enables the Rapid Synthesis of Polysubstituted Maleimides. J. Am. Chem. Soc. 2006, 128, 14816–14817. DOI: 10.1021/ja066305g.
  • Shetgiri, N. P.; Nayak, B. K. Synthesis and Antimicrobial Activity of Some Succinimides. Indian J. Chem. 2005, 44B, 1933–1936. ISSN: 0975–0975.
  • Bougheloum, C.; Belghiche, R.; Messalhi, A. Synthesis of New Substituted N-Sulfonyl Pyrrolidine-2,5-Dione Using Dawson-Type Heteropolyacid as Catalyst. Phosphorus Sulfur Silicon Relat. Elem. 2015, 190, 269–276. DOI: 10.1080/10426507.2014.947413.
  • Bougheloum, C.; Guezane Lakoud, S.; Belghiche, R.; Messalhi, A. Simple, Rapid and Clean Condensation of Sulfonamide and Maleic Anhydride Derivatives: Synthesis of Novel 1H-Pyrrole-2,5-Diones Under Heterogeneous Conditions. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 1344–1350. DOI: 10.1080/10426507.2016.1193504.
  • Bougheloum, C.; Barbey, C.; Berredjem, M.; Messalhi, A.; Dupont, N. Synthesis and Structural Study of N-Acetyl-1,2,3,4-Tetrahydroisoquinoline-2-Sulfonamide Obtained Using H6P2W18O62 as Acidic Solid Catalyst. J. Mol. Struct. 2013, 1041, 6–15. DOI: 10.1016/j.molstruc.2013.02.018.
  • Bougheloum, C.; Alioua, S.; Belghiche, R.; Benali, N.; Messalhi, A. An Efficient Green Synthesis of New Benzothiazoles Containing Sulfonamide or Cyclic Imide Moieties. J. Heterocyclic Chem. 2020, 57, 120–131. DOI: 10.1002/jhet.3753.
  • Benali, N.; Bougheloum, C.; Alioua, S.; Belghiche, R.; Messalhi, A. Efficient N-Acylation of Sulfonamides Using Cesium Salt of Wells–Dawson Heteropolyacid as Catalyst: Synthesis of New N-Acyl Sulfonamides and Cyclic Imides. Synth. Commun. 2018, 48, 3099–3112. DOI: 10.1080/00397911.2018.1535077.
  • (a) Reddy, K. M.; Babu, N. S.; Suryanarayana, I.; Prasad, P. S.; Lingaiah, N. The Silver Salt of 12-Tungstophosphoric Acid: An Efficient Catalyst for the Three-Component Coupling of an Aldehyde, an Amine and an Alkyne. Tetrahedron Lett. 2006, 47, 7563–7566. DOI: 10.1016/j.tetlet.2006.08.094. (b) Poźniczek, J.; Lubańska, A.; Mucha, D.; Bielański, A. Cesium Partly Substituted Salts CsxH6P2W18O62 of Wells–Dawson Heteropolyacid as Catalysts for Ethyl-Tert-Butyl Ether Synthesis. J. Mol. Catal. A: Chem. 2006, 257, 99–104. DOI: 10.1016/j.molcata.2006.04.036.
  • Thakur, A.; Sharma, A.; Sharma, A. Efficient Synthesis of Xanthenedione Derivatives Using Cesium Salt of Phosphotungstic Acid as a Heterogeneous and Reusable Catalyst in Water. Synth. Commun. 2016, 46, 1766–1771. DOI: 10.1080/00397911.2016.1226340.
  • (a) Driowya, M.; Puissant, A.; Robert, G.; Auberger, P.; Benhida, R.; Bougrin, K. Ultrasound-Assisted One-Pot Synthesis of anti-CML Nucleosides Featuring 1,2,3-Triazole Nucleobase under Iron-Copper Catalysis. Ultrason. Sonochem. 2012, 19, 1132–1138. DOI: 10.1016/j.ultsonch.2012.04.007. (b) Pasha, M. A.; Nagashree, S. A One-Pot Three-Component Synthesis of 4, 6-Diarylpyrimidin-2 (1H)-Ones (DAPMs) Using Atomized Sodium in THF under Sonic Condition. Ultrason. Sonochem. 2014, 21, 1279–1283. DOI: 10.1016/j.ultsonch.2013.12.021. (c) Arafa, W. A.; Shaker, R. M. A Facile Green Chemistry Approaches towards the Synthesis of bis-Schiff Bases Using Ultrasound versus Microwave and Conventional Method without Catalyst. Arkivoc 2016, 2016, 187–201. DOI: 10.3998/ark.5550190.p009.464.
  • Friedman, L.; Little, R.; Reichle, W. p-Toluenesulfonic Acid, Hydrazide. Org. Synth. 1960, 40, 93. DOI: 10.15227/orgsyn.040.0093.
  • Govindan, K.; Chen, N. Q.; Chuang, Y. W.; Lin, W. Y. Unlocking Amides through Selective C–N Bond Cleavage: Allyl Bromide-Mediated Divergent Synthesis of Nitrogen-Containing Functional Groups. Org. Lett. 2021, 23, 9419–9424. DOI: 10.1021/acs.orglett.1c03541.
  • Parsons, W. H.; Rutland, N. T.; Crainic, J. A.; Cardozo, J. M.; Chow, A. S.; Andrews, C. L.; Sheehan, B. K. Development of Succinimide-Based Inhibitors for the Mitochondrial Rhomboid Protease PARL. Bioorg. Med. Chem. Lett. 2021, 49, 128290–128298. DOI: 10.1016/j.bmcl.2021.128290.
  • Lipinski, C. A. Lead- and Drug-like Compounds: The Rule-of-Five Revolution. Drug Discov. Today Technol. 2004, 1, 337–341. DOI: 10.1016/j.ddtec.2004.11.007.
  • Jadhav, P. B.; Yadav, A. R.; Gore, M. G. Concept of Drug Likeness in Pharmaceutical Research. Int. J. Pharm. Bio. Sci. 2015, 6, 142–154. ID: 168400804.
  • Veber, D. F.; Johnson, S. R.; Cheng, H. Y.; Smith, B. R.; Ward, K. W.; Kopple, K. D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. DOI: 10.1021/jm020017n.
  • Qiu, X.; Janson, C. A.; Smith, W. W.; Green, S. M.; McDevitt, P.; Johanson, K.; Carter, P.; Hibbs, M.; Lewis, C.; Chalker, A.; et al. Crystal Structure of Staphylococcus aureus Tyrosyl-tRNA Synthetase in Complex with a Class of Potent and Specific Inhibitors. Protein Sci. 2001, 10, 2008–2016. DOI: 10.1110/ps.18001.
  • G-Dayanandan, N.; Paulsen, J. L.; Viswanathan, K.; Keshipeddy, S.; Lombardo, M. N.; Zhou, W.; Lamb, K. M.; Sochia, A. E.; Alverson, J. B.; Priestley, N. D.; et al. Propargyl-Linked Antifolates Are Dual Inhibitors of Candida albicans and Candida glabrata. J Med Chem 2014, 57, 2643–2656. DOI: 10.1021/jm401916j.
  • (a) Aggarwal, S.; Devgun, M.; Narang, R.; Lal, R.; Rana, A. C.; Goyal, R.; Singh, L.; Sharma, S. Molecular Docking Studies of Thiazolopyrimidine Derivatives as Antimicrobial Agents. J. Adv. Sci. Res. 2021, 12, 285–291. ISSN: 0976–9595. (b) Jays, J.; Mohan, S.; Saravanan, J. Molecular Docking Studies of Novel Aminopyrimidines as Potent Antifungal Agents. Chem. Methodol. 2019, 3, 442–450. DOI: 10.22034/chemm.2018.151655.1100.
  • Clinical Laboratory Standards Institute/NCCLS. Methods of Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Approved Standard. 10th ed. CLSI Document M07 - A10; Clinical and Laboratory Standards Institute: Wayne, PA, 2015.
  • Trott, O.; Olson, A. J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. DOI: 10.1002/jcc.21334.
  • Biovia. Discovery Studio Modeling Environment; Dassault Systemes Biovia Corp.: San Diego, CA, 2017.
  • Meliani, S.; Toumi, S.; Djahoudi, H.; Deghdegh, K.; Amoura, K.; Djahoudi, A. Synergistic Combination of Colistin with Imipenem, Amikacine or Ciprofloxacin against Acinetobacter baumannii and Pseudomonas aeruginosa Carbapenem-Resistant Isolated in Annaba Hospital Algeria. Biocell 2020, 44, 175–182. DOI: 10.32604/biocell.2020.09097.
  • Mellouk, F. Z.; Bakour, S.; Meradji, S.; Al-Bayssari, C.; Bentakouk, M. C.; Zouyed, F.; Djahoudi, A.; Boutefnouchet, N.; Rolain, J. M. First Detection of VIM-4-Producing Pseudomonas aeruginosa and OXA-48-Producing Klebsiella pneumoniae in Northeastern (Annaba, Skikda) Algeria. Microb. Drug Resist. 2017, 23, 335–344. DOI: 10.1089/mdr.2016.0032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.