55
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The syntheses of 2-hydroxybenzothiazole substituted cyclotriphosphazenes: Spectroscopic characterizations

ORCID Icon
Pages 277-282 | Received 10 Jan 2023, Accepted 26 Dec 2023, Published online: 22 May 2024

References

  • Chakraborty, A.; Ahmed, N.; Chandrasekhar, V. Phosphazenes. In Organophosphorus Chemistry, Higham, L. J.; Allen, D. W.; Tebby, J. C. Eds., Royal Society of Chemistry 2022, 51, pp 355–397. DOI: 10.1039/9781839166198-00355.
  • Gleria, M.; Jaeger, R. D. Applicative Aspects of Cyclophosphazenes, Nova Science Publishers, New York, 2004.
  • Akbaş, H.; Karadağ, A.; Destegül, A.; Çakırlar, Ç.; Yerli, Y.; Tekin, K. C.; Malayoğlu, U.; Kılıç, Z. Synthesis, and Spectroscopic, Thermal and Dielectric Properties of Phosphazene Based Ionic Liquids: OFET Application and Tribological Behavior. New J. Chem. 2019, 43, 2098–2110. DOI: 10.1039/C8NJ04948C.
  • Elmas, G.; Okumuş, A.; Hökelek, T.; Kılıç, Z. Phosphorus-Nitrogen Compounds. Part 52. The Reactions of Octachlorocyclotetraphosphazene with Sodium 3-(N-Ferrocenyl-Methylamino)-1-Propanoxide: Investigations of Spectroscopic, Crystallographic and Stereogenic Properties. Inorg. Chim. Acta 2019, 497, 119106. DOI: 10.1016/j.ica.2019.119106.
  • Chistyakov, E.; Yudaev, P.; Nelyubina, Y. Crystallization of Nano-Sized Macromolecules by the Example of Hexakis-[-4{(N-Allylimino)Methyl}Phenoxy]-Cyclotriphosphazene. Nanomaterials 2022, 12, 2268. DOI: 10.3390/nano12132268.
  • Elmas, G.; Okumuş, A.; Kılıç, Z.; Özbeden, P.; Açık, L.; Tunalı, B. Ç.; Türk, M.; Çerçi, N. A. Hökelek T. Phosphorus-Nitrogen Compounds. Part 48. Synthesis of the Phosphazenium Salts Containing 2-Pyridyl Pendant Arm: Structural Characterizations, Thermal Analysis, Antimicrobial and Cytotoxic Activity Studies. Indian J. Chem. Sec. A 2020, 59A, 533–550. DOI:. http://nopr.niscair.res.in/handle/123456789/54457.
  • Li, Z.; Huang, C.; Hua, J.; Qin, J.; Yang, Z.; Ye, C. A New Postfunctional Approach to Prepare Second-Order Nonlinear Optical Polyphosphazenes Containing Sulfonyl-Based Chromophore. Macromolecules 2004, 37, 371–376. DOI: 10.1021/ma035044h.
  • Inoue, K.; Yamauchi, T.; Itoh, T.; Ihara, E. Ionic Conductivity of Cross-Linked Polymethacrylate Derivatives/Cyclophosphazenes/Li+ Salt Complexes. J. Inorg. Organomet. Polym. 2007, 17, 367–375. DOI: 10.1007/s10904-007-9126-3.
  • Cheng, J.; Wang, J.; Yang, S.; Zhang, Q.; Hu, Y.; Ding, G.; Huo, S. Aminobenzo-Thiazole-Substituted Cyclotriphosphazene Derivative as Reactive Flame Retardant for Epoxy Resin. React. Funct. Polym. 2020, 146, 104412. DOI: 10.1016/j.reactfunctpolym.2019.104412.
  • Jamain, Z.; Khairuddean, M.; Guan-Seng, T.; Rahman, A. B. A. Synthesis, Characterization and Mesophase Transition of Hexasubstituted Cyclotriphosphazene Molecules with Schiff Base and Azo Linking Units and Determination of Their Fire Retardant Properties. Macromol. Res. 2021, 29, 331–341. DOI: 10.1007/s13233-021-9013-8.
  • Elmas, G.; Kılıç, Z.; Çoşut, B.; Keşan, G.; Açık, L.; Çam, M.; Tunalı, B. Ç.; Türk, M.; Hökelek, T. Synthesis of Bis(2,2,3,3-Tetrafluoro-1,4-Butandialkoxy)-2-Trans-6-Bis(4-Fluorobenzyl)Spiro Cyclotetraphosphazene: Structural Characterization, Biological Activity and DFT Studies. J. Chem. Crystallogr. 2020, 51, 235–250. DOI: 10.1007/s10870-020-00851-4.
  • Yurttaş, L.; Özkay, Y.; Karaca Gençer, H.; Acar, U. Synthesis of Some New Thiazole Derivatives and Their Biological Activity Evaluation. Hindawi. J. Chem 2015, 2015, 1–7. DOI: 10.1155/2015/464379.
  • Zablotskaya, A.; Segal, I.; Geronikaki, A.; Eremkina, T.; Belyakov, S.; Petrova, M.; Shestakova, I.; Zvejniece, L.; Nikolajeva, V. Synthesis, Physicochemical Characterization, Cytotoxicity, Antimicrobial, anti-İnflammatory and Psychotropic Activity of New N-[1,3-(Benzo)Thiazol-2-Yl]-ω-[3,4-Dihydroisoquinolin-2(1H)-Yl]Alkanamides. Eur. J. Med. Chem. 2013, 70, 846–856. DOI: 10.1016/j.ejmech.2013.10.008.
  • Allcock, H. R.; Silverberg, E. N.; Dudley, G. K.; Pucher, S. R. Inclusion Polymerization within a Tris(2,3-Naphthylenedioxy) Cyclotriphosphazene Clathrate. Macromolecules 1994, 27, 7550–7555. DOI: 10.1021/ma00104a008.
  • Allcock, H. R.; Primrose, A. P.; Sunderland, N.; J; Rheingold, A. L.; Guzei, A. I.; Parvez, M. Inclusion of Polymers within the Crystal Structure of Tris(o-Phenylenedioxy) Cyclotriphosphazene. Chem. Mater. 1999, 11, 1243–1252. DOI: 10.1021/cm980611e.
  • Allcock, H. R.; Sunderland, N. J.; Primrose, A. P.; Rheingold, A. L.; Guzei, I. A.; Parvez, M. A New Host for Polymer and Small-Molecule Clathration. Chem. Mater. 1999, 11, 2478–2485. DOI: 10.1021/cm990291e.
  • Comotti, A.; Gallazzi, M. C.; Simonutti, R.; Sozzani, P. 13C and 31P Magic-Angle Spinning Nuclear Magnetic Resonance Spectroscopy of Tris(2,3-Naphthalenedioxy)-Cyclotriphosphazene Inclusion Compounds. Chem. Mater. 1998, 10, 3589–3596. DOI: 10.1021/cm980338g.
  • Sozzani, P.; Comotti, A.; Simonutti, R.; Meersmann, T.; Logan, J. W.; Pines, A. A Porous Crystalline Molecular Solid Explored by Hyperpolarized Xenon. Angew. Chem. Int. Ed. 2000, 39, 2695–2699. DOI: 10.1002/1521-3773(20000804)39:15<2695::AID-ANIE2695>3.0.CO;2-M.
  • Carriedo, G. A.; Catuxo, L. F.; García Alonso, F. J.; Gómez-Elipe, P.; González, P. A. Preparation of a New Type of Phosphazene High Polymers Containing 2,2‘- Dioxybiphenyl Groups. Macromolecules 1996, 29, 5320–5325. DOI: 10.1021/ma951830d.
  • Kumar, D.; Gupta, D. A. Aromatic Cyclolinear Phosphazene Polyimides Based on a Novel Bis-Spiro-Substituted Cyclotriphosphazene Diamine. Macromolecules 1995, 28, 6323–6329. DOI: 10.1021/ma00122a045.
  • Allcock, H. R.; Stein, M. T.; Stanko, J. A. Phosphonitrilic Compounds. IX. Crystal and Molecular Structure of Tris(2,2'-Dioxybiphenyl)Cyclotriphosphazene. J. Am. Chem. Soc. 1971, 93, 3173–3178. DOI: 10.1021/ja00742a014.
  • Pelc, R. A.; Brandt, K.; Jedliński, Z. Synthesis and Characterization of New 1,1′,3,3′,5,5′-Hexachloro-2,4,6, 1λ5,3λ5,5λ5-Triazatriphosphorine Spiro-[Arylenedioxy]-Derivatives. Phosphorus, Sulfur, Silicon Relat. Elem. 1990, 47, 375–382. DOI: 10.1080/10426509008037993.
  • Chandrasekhar, V.; Narayanan, R.,S. Metalation Studies of 3- and 4-Pyridyloxy-Cyclophosphazenes: Metallamacrocycles to Coordination Polymers. Dalton Trans. 2013, 42, 6619–6632. DOI: 10.1039/c3dt33084b.
  • İbişoğlu, H.; Beşli, S.; Yuksel, F.; Ün, İ.; Kılıç, A. Investigation of Nucleophilic Substitution Pathway for the Reactions of 1,4-Benzodioxane-6-Amine with Chlorocyclophosphazenes. Inorg. Chim. Acta 2014, 409, 216–226. DOI: 10.1016/j.ica.2013.09.030.
  • Wu, X.; Liu, S. Z.; Tian, D. T.; Qiu, J. J.; Liu, C. M. Well-Defined Organic-İnorganic Hybrid Benzoxazine Monomers Based on Cyclotriphosphazene: Synthesis, Properties of the Monomers and Polybenzoxazines. Polymer 2011, 52, 4235–4245. DOI: 10.1016/j.polymer.2011.07.037.
  • Chandrasekhar, V.; Pandey, M. D.; Das, B.; Mahanti, B.; Gopal, K.; Azhakar, R. Synthesis, Structure and Photo-Physical Properties of Phosphorus-Supported Fluorescent Probes. Tetrahedron 2011, 67, 6917–6926. DOI: 10.1016/j.tet.2011.06.073.
  • Chandrasekhar, V.; Senapati, T.; Dey, A.; Das, S.; Kalisz, M.; Clérac, R. Cyclo- and Carbophosphazene-Supported Ligands for the Assembly of Heterometallic (Cu2+/Ca2+, Cu2+/Dy3+, Cu2+/Tb3+) Complexes: Synthesis, Structure, and Magnetism. Inorg. Chem. 2012, 51, 2031–2038. DOI: 10.1021/ic201463g.
  • Ainscough, E. W.; Brodie, A. M.; Edwards, P. J. B.; Jameson, G. B.; Otter, C. A.; Kirk, S. Zinc, Cadmium, and Mercury Complexes of Pyridyloxy-Substituted Cyclotriphosphazene: Syntheses, Structures, and Fluxional Behavior. Inorg. Chem. 2012, 51, 10884–10892. DOI: 10.1021/ic3013574.
  • Ainscough, E. W.; Brodie, A. M.; Derwahl, A.; Kirk, S.; Otter, C. A. Conformationally Rigid Chelate Rings in Metal Complexes of Pyridyloxy-Substituted 2,2‘-Dioxybiphenyl-Cyclotetra-and Cyclotriphosphazene Platforms. Inorg. Chem. 2007, 46, 9841–9852. DOI: 10.1021/ic701241v.
  • Begeç, S. Synthesis of Phenoxy-Substituted Spiro-Ansa Phosphazene Derivatives. Heteroatom Chem 2007, 18, 372–375. DOI: 10.1002/hc.20322.
  • Carriedo, G. A.; García Alonso, F. J.; López Vizcaíno, S.; Valenzuela, C. D.; Yutronic, N. The Reaction of the Bis-Spirocyclic Phosphazene [N3P3(O2C12H8)2Cl2] (O2C12H8 = 2,2′-Dioxybiphenyl) with Thiophenols, in the Presence of Alkali Carbonates. Phosphorus, Sulfur, Silicon Relat. Elem. 2003, 178, 1549–1558. DOI: 10.1080/10426500307869.
  • Begeç, S. Synthesis and Characterization of New Spiro Cyclotriphosphazene Derivatives. Inorg. Chem. Commun 2022, 140, 109457. DOI: 10.1016/j.inoche.2022.109457.
  • Erdener Çıralı, D.; Dayan, O. Synthesis of Tetranuclear Ruthenium (II) Complex of Pyridyloxy-Substituted 2,2′-Dioxybiphenyl-Cyclotriphosphazene Platform and İts Catalytic Application in the Transfer Hydrogenation of Ketones. Phosphorus, Sulfur, Silicon Relat. Elem. 2015, 190, 1100–1107. DOI: 10.1080/10426507.2014.966190.
  • Erdener Çıralı, D.; Dayan, O.; Özdemir, N.; Hacıoglu, N. A New Phosphazene Derivative, spiro-N3P3[(O2C12H8)2(OC6H6N-3)2], and İts Ru(II) Complex: Syntheses, Crystal Structure, Catalytic Activity and Antimicrobial Activity Studies. Polyhedron 2015, 88, 170–175. DOI: 10.1016/j.poly.2014.12.040.
  • Tümer, Y.; Özdemir, Z. S. Vanillinato-Substituted Monospirocyclotriphosphazenes: Synthesis, Spectroscopic and Crystallographic Characterizations, and Thermal Properties. Russ. J. Gen. Chem. 2021, 91, 2554–2563. DOI: 10.1134/S1070363221120276.
  • Palabıyık, D.; Mutlu Balcı, C. Synthesis, Characterization, and Spectroscopic Properties of the New Type of Aminoquinoline-Modified Cyclotriphosphazenes. Phosphorus, Sulfur, Silicon Relat. Elem. 2022, 197, 825–835. DOI: 10.1080/10426507.2022.2046570.
  • Tanrıverdi Eçik, E.; İbişoğlu, H.; Yenilmez Çiftçi, G.; Demir, G.; Erdemir, E.; Yuksel, F. Nucleophilic Substitution Reactions of Monofunctional Nucleophilic Reagents with Cyclotriphosphazenes Containing 2,2- Dioxybiphenyl Units. Turk. J. Chem. 2020, 44, 87–98. DOI: 10.3906/kim-1907-45.
  • İbişoğlu, H.; Atilla, D.; Tümay, S. O.; Şenocak, A.; Duygulu, E.; Yuksel, F. New Cyclotriphosphazene Ligand Containing İmidazole Rings and İts One-Dimensional Copper (II) Coordination Polymer. J. Mol. Struct. 2020, 1208, 127888. DOI: 10.1016/j.molstruc.2020.127888.
  • Mukundam, V.; Dhanunjayarao, K.; Mamidala, R.; Venkatasubbaiah, K. Synthesis, Characterization and Aggregation İnduced Enhanced Emission Properties of Tetraaryl Pyrazole Decorated Cyclophosphazenes. J. Mater. Chem. C 2016, 4, 3523–3530. DOI: 10.1039/C6TC00909C.
  • Tümay, S. O.; Uslu, A.; Ardıç Alidağı, H.; Kazan, H. H.; Bayraktar, C.; Yolaçan, T.; Durmuş, M.; Yeşilot, S. A Systematic Series of Fluorescence Chemosensors with Multiple Binding Sites for Hg (II) Based on Pyrenyl-Functionalized Cyclotriphosphazenes and Their Application in Live Cell İmaging. New J. Chem. 2018, 42, 14219–14228. DOI: 10.1039/C8NJ02482K.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.