117
Views
0
CrossRef citations to date
0
Altmetric
Rapid Communication

Synthesis, characterization and anticancer screening of novel phenylbenzylidene thiosemicarbazone derivatives

, , , & ORCID Icon
Pages 267-276 | Received 30 Jun 2023, Accepted 11 Mar 2024, Published online: 25 Mar 2024

References

  • Casas, J. S.; García-Tasende, M. S.; Sordo, J. Main Group Metal Complexes of Semicarbazones and Thiosemicarbazones. A Structural Review. Coord. Chem. Rev. 2000, 209, 197–261. DOI: 10.1016/S0010-8545(00)00363-5.
  • Kasuga, N. C.; Sekino, K.; Ishikawa, M.; Honda, A.; Yokoyama, M.; Nakano, S.; Shimada, N.; Koumo, C.; Nomiya, K. Synthesis, Structural Characterization and Antimicrobial Activities of 12 Zinc(II) Complexes with Four Thiosemicarbazone and Two Semicarbazone Ligands. J. Inorg. Biochem. 2003, 96, 298–310. DOI: 10.1016/S0162-0134(03)00156-9.
  • Taroua, M.; Ribuot, C.; Péra, M. H.; Taillandier, G.; Fatome, M.; Laval, J. D.; Demenge, P.; Leclerc, G. New α, β and y Semicarbazone and Thiosemicarbazone 1,3-Dithiolanes as Radioprotectors. Anticonvulsant Activity. Eur. J. Med. Chem. 1996, 31, 589–595. DOI: 10.1016/0223-5234(96)89554-7.
  • Mishra, V.; Pandeya, S. N.; DeClercq, E.; Pannecouque, C.; Witvrouw, M. Synthesis of Aryl Semicarbazone of 4-Aminoacetophenone and Their anti-HIV Activity. Pharm. Acta Helv. 1998, 73, 215–218. DOI: 10.1016/S0031-6865(98)00028-4.
  • Turner, S.; Myers, M.; Gadie, B.; Hale, S. A.; Horsley, A.; Nelson, A. J.; Pape, R.; Saville, J. F.; Doxey, J. C.; Berridge, T. L. Antihypertensive Thiadiazoles. 2. Vasodilator Activity of Some 2-Aryl-5-Guanidino-1,3,4-Thiadiazoles. J. Med. Chem. 1988, 31, 906–913. DOI: 10.1021/jm00400a004.
  • Hanna, M. A.; Girges, M. M.; Rasała, D.; Gawinecki, R. Synthesis and Pharmacological Evaluation of Some Novel 5-(Pyrazol-3-Yl)-Thiadiazole and Oxadiazole Derivatives as Potential Hypoglycemic Agents. Arzneim. Forsch 1995, 45, 1074–1078.
  • Andreani, A.; Granaiola, M.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M. Synthesis and Antitubercular Activity of Imidazo[2,1-b]Thiazoles. Eur. J. Med. Chem. 2001, 36, 743–746. DOI: 10.1016/S0223-5234(01)01266-1.
  • Holla, B. S.; Malini, K. V.; Rao, B. S.; Sarojini, B. K.; Kumari, N. S. Synthesis of Some New 2,4-Disubstituted Thiazoles as Possible Antibacterial and anti-Inflammatory Agents. Eur. J. Med. Chem. 2003, 38, 313–318. DOI: 10.1016/S0223-5234(02)01447-2.
  • Mazzone, G.; Pignatello, R.; Mazzone, S.; Panico, A.; Pennisi, G.; Castana, R.; Mazzone, P. Synthesis and Local Anesthetic Activity of Alkylaminoacyl Derivatives of 2-Amino-1,3,4-Thiadiazole. Farmaco 1993, 48, 1207–1224.
  • Basak, P.; Gangopadhyay, S.; De, S.; Drew, M. G. B.; Gangopadhyay, P. K. Cobalt(III) Complexes of Some Aromatic Thiohydrazides - Synthesis, Characterization and Structure. Inorg. Chim. Acta 2010, 363, 1495–1499. DOI: 10.1016/j.ica.2010.01.011.
  • Tadros, A. B.; El-Batouti, M. Spectral Study and Antifouling Assessment of Some Thiosemicarbazone Derivatives. Anti-Corros. Methods Mater. 2004, 51, 406–413. DOI: 10.1108/00035590410560958.
  • Ganjali, M. R.; Hosseini, M.; Salavati-Niasari, M.; Poursaberi, T.; Shamsipur, M.; Javanbakht, M.; Hashemi, O. R. Nickel Ion-Selective Coated Graphite PVC-Membrane Electrode Based on Benzylbis(Thiosemicarbazone). Electroanalysis 2002, 14, 526–531. DOI: 10.1002/1521-4109(200204)14:7/83.0.CO;2-O.
  • Rubčić, M.; Đilović, I.; Cindrić, M.; Matković-Čalogović, D. Two Thiosemicarbazones Derived from Salicylaldehyde: Very Specific Hydrogen-Bonding Interactions of the N-H···S = C Type. Acta Crystallogr, Sect. C: Cryst. Struct. Commun. 2008, 64, 570–573. DOI: 10.1107/S0108270108029016.
  • Pelosi, G. Thiosemicarbazone Metal Complexes: From Structure to Activity. TOCRYJ. 2010, 3, 16–28. DOI: 10.2174/1874846501003010016.
  • Bal, T. R.; Anand, B.; Yogeeswari, P.; Sriram, D. Synthesis and Evaluation of Anti-HIV Activity of Isatin β-Hiosemicarbazone Derivatives. Bioorg. Med. Chem. Lett. 2005, 15, 4451–4455. DOI: 10.1016/j.bmcl.2005.07.046.
  • Jagadeesh, M.; Asha Kumar, V.; Ramachandraiah, C.; Varada Reddy, A. New Halogenated Thiosemicarbazones as Potential Antimicrobial Agents: Synthesis and Spectral Characterization. J. Appl. Pharm. Sci. 2013, 3, 111–115. DOI: 10.7324/JAPS.2013.3721.
  • Rajak, H.; Agarawal, A.; Parmar, P.; Thakur, B. S.; Veerasamy, R.; Sharma, P. C.; Kharya, M. D. 2,5-Disubstituted-1,3,4-Oxadiazoles/Thiadiazole as Surface Recognition Moiety: Design and Synthesis of Novel Hydroxamic Acid-Based Histone Deacetylase Inhibitors. Bioorg. Med. Chem. Lett. 2011, 21, 5735–5738. DOI: 10.1016/j.bmcl.2011.08.022.
  • de Oliveira, R. B.; de Souza-Fagundes, R. B.; Soares, R. P. P.; Andrade, A. A.; Krettli, A. U.; Zani, C. L. Synthesis and Antimalarial Activity of Semicarbazone and Thiosemicarbazone Derivatives. Eur. J. Med. Chem. 2008, 43, 1983–1988. DOI: 10.1016/j.ejmech.2007.11.012.
  • Summers, K. L. A Structural Chemistry Perspective on the Antimalarial Properties of Thiosemicarbazone Metal Complexes. Mini Rev. Med. Chem. 2019, 19, 569–590. DOI: 10.2174/1389557518666181015152657.
  • Hameed, A.; Khan, K. M.; Zehra, S. T.; Ahmed, R.; Shafiq, Z.; Bakht, S. M.; Yaqub, M.; Hussain, M.; de la Vegade León, A.; Furtmann, N.; et al. Synthesis, Biological Evaluation and Molecular Docking of N-Phenyl Thiosemicarbazones as Urease Inhibitors. Bioorg. Chem. 2015, 61, 51–57. DOI: 10.1016/j.bioorg.2015.06.004.
  • Islam, M.; Khan, A.; Shehzad, M. T.; Hameed, A.; Ahmed, N.; Halim, S. A.; Khiat, M.; Anwar, M. U.; Hussain, J.; Csuk, R.; et al. Synthesis and Characterization of New Thiosemicarbazones, as Potent Urease Inhibitors. In Vitro and in Silico Studies. Bioorg. Chem. 2019, 87, 155–162. DOI: 10.1016/j.bioorg.2019.03.008.
  • Li, J.; Zheng, L.; King, I.; Doyle, T.; Chen, S. H. Syntheses and Antitumor Activities of Potent Inhibitors of Ribonucleotide Reductase: 3-Amino-4-Methylpyridine-2-Carboxaldehyde-Thiosemicarbazone (3-Amp), 3-Amino-Pyridine-2-Carboxaldehyde-Thiosemicarbazone (3-Ap) and Its Water-Soluble Prodrugs. Curr. Med. Chem. 2012, 8, 121–133. DOI: 10.2174/0929867013373741.
  • Kulkarni, N. V.; Revankar, V. K.; Kirasur, B. N.; Hugar, M. H. Transition Metal Complexes of Thiosemicarbazones with Quinoxaline Hub: An Emphasis on Antidiabetic Property. Med. Chem. Res. 2012, 21, 663–671. DOI: 10.1007/s00044-011-9576-6.
  • Shehzad, M. T.; Imran, A.; Njateng, G. S. S.; Hameed, A.; Islam, M.; Al-Rashida, M.; Uroos, M.; Asari, A.; Shafiq, Z.; Iqbal, J. Benzoxazinone-Thiosemicarbazones as Antidiabetic Leads via Aldose Reductase Inhibition: Synthesis, Biological Screening and Molecular Docking Study. Bioorg. Chem. 2019, 87, 857–866. DOI: 10.1016/j.bioorg.2018.12.006.
  • Sever, B.; Soybir, H.; Görgülü, S.; Cantürk, Z.; Altıntop, M. D. Pyrazole Incorporated New Thiosemicarbazones: Design, Synthesis and Investigation of DPP-4 Inhibitory Effects. Molecules 2020, 25, 5003. DOI: 10.3390/molecules25215003.
  • Moorthy, N. S. H. N.; Cerqueira, N. M. F. S. A.; Ramos, M. J.; Fernandes, P. A. Aryl- and Heteroaryl-Thiosemicarbazone Derivatives and Their Metal Complexes: A Pharmacological Template. Recent Pat. Anticancer. Drug Discov. 2013, 8, 168–182. DOI: 10.2174/1574892811308020005.
  • Altıntop, M. D.; Atlı, Ö.; Ilgın, S.; Demirel, R.; Özdemir, A.; Kaplancıklı, Z. A. Synthesis and Biological Evaluation of New Naphthalene Substituted Thiosemicarbazone Derivatives as Potent Antifungal and Anticancer Agents. Eur. J. Med. Chem. 2016, 108, 406–414. DOI: 10.1016/j.ejmech.2015.11.041.
  • Wang, Y.; Gu, W.; Shan, Y.; Liu, F.; Xu, X.; Yang, Y.; Zhang, Q.; Zhang, Y.; Kuang, H.; Wang, Z.; Wang, S. Design, Synthesis and Anticancer Activity of Novel Nopinone-Based Thiosemicarbazone Derivatives. Bioorg. Med. Chem. Lett. 2017, 27, 2360–2363. DOI: 10.1016/j.bmcl.2017.04.024.
  • He, Z.; Qiao, H.; Yang, F.; Zhou, W.; Gong, Y.; Zhang, X.; Wang, H.; Zhao, B.; Ma, L.; Liu, H. M.; Zhao, W. Novel Thiosemicarbazone Derivatives Containing Indole Fragment as Potent and Selective Anticancer Agent. Eur. J. Med. Chem. 2019, 184, 111764. DOI: 10.1016/j.ejmech.2019.111764.
  • Sibuh, B. Z.; Khanna, S.; Taneja, P.; Sarkar, P.; Taneja, N. K. Molecular Docking, Synthesis and Anticancer Activity of Thiosemicarbazone Derivatives against MCF-7 Human Breast Cancer Cell Line. Life Sci. 2021, 273, 119305. DOI: 10.1016/j.lfs.2021.119305.
  • Kalinowski, D. S.; Quach, P.; Richardson, D. R. Thiosemicarbazones: The New Wave in Cancer Treatment. Future Med. Chem. 2009, 1, 1143–1151. DOI: 10.4155/fmc.09.80.
  • Sharma, B.; Kothari, R.; Synthesis, C. Anticancer, Antibacterial and Antioxidant Evaluation of Macrocyclic Copper(II) Complexes Derived from Thiosemicarbazide. Int. J. Pharma Bio Sci. 2015, 6, 1154–1169.
  • El-Sawaf, A. K.; El-Essawy, F.; Nassar, A. A.; El-Samanody, E. S. A. Synthesis, Spectral, Thermal and Antimicrobial Studies on Cobalt(II), Nickel(II), Copper(II), Zinc(II) and Palladium(II) Complexes Containing Thiosemicarbazone Ligand. J. Mol. Struct. 2018, 1157, 381–394. DOI: 10.1016/j.molstruc.2017.12.075.
  • Demertzi, D. K.; Demertzis, M. A.; Filiou, E.; Pantazaki, A. A.; Yadav, P. N.; Miller, J. R.; Zheng, Y.; Kyriakidis, D. A. Platinum(II) and Palladium(II) Complexes with 2-Acetyl Pyridine 4-N-Ethyl Thiosemicarbazone Able to Overcome the Cisplatin Resistance. Structure, Antibacterial Activity and DNA Strand Breakage. Biometals 2003, 16, 411–418. DOI: 10.1023/A:1022543718598.
  • (a) Srivastava, N.; Chaturvedi, D.; Kishore, R.; Kaur, M.; Kaur, R. Triton-B/CS2 Mediated Novel Synthesis of Substituted Thioureas: A Novel Class of anti-Cancer Agents. Indian J. Chem. B 2022, 61, 870–877. DOI: 10.56042/ijc.v61i8.65053. (b) Srivastava, N.; Kishore, R. Cleaner and Greener Synthesis of 3H-Benzothiazole-2-Thione and Its Derivatives. J. Sulfur Chem. 2020, 42, 29–39. DOI: 10.1080/17415993.2020.1803321. (c) Srivastava, N. Tetrabutylammonium Iodide/I2 Mediated Convenient and Green Synthesis of Substituted Organic Isothiocyanates. Org. Prep. Proced. Int. 2021, 53, 562–570. DOI: 10.1080/00304948.2021.1975487. (d) Srivastava, N.; Saxena, M.; Shukla, M. Novel Synthesis of Symmetrical Dialkyl/Diaryl Trithiocarbonates in Non-Aqueous Medium at Room Temperature Using CS2, CS2CO3 and Alkyl/Aryl Halide. RJC. 2019, 12, 333–337. DOI: 10.31788/RJC.2019.1215038. (e) Srivastava, N.; Kishore, R.; Kalia, N.; Singh, J.; Chaturvedi, D. TBAI/CS2 Mediated Cleaner, Greener Synthesis and Anticancer Activity of 3-Substituted-(4-Oxo-2-Thioxo-Thiazolidin-5-Ylidene)-Methyl Ethanoates. Pharma Chem 2021, 13, 36–47. (f) Srivastava, N.; Kishore, R. Cleaner, Greener Synthesis, Characterization, and Anticancer Evaluation of 2-Thioxo-1,3-Thiazolanes. Ind. J. Heterocycl. Chem 2021, 31, 265–271. https://connectjournals.com/01951.2021.31.265. (g) Srivastava, N.; Kishore, R. Synthesis, Characterization, Anticancer, Antibacterial, Antifungal, and Antimalarial Activity of (Aryl or Hetero Aryl) Substituted-4-Methyl-2,3-Dihydro-2-Thioxo-1H-Imidazol-5-Yl) Ethanone Derivatives. Indian J. Heterocycl. Chem. 2021, 31, 347–355. https://connectjournals.com/01951.2021.31.347. (h) Srivastava, N. Efficient TBAI-CS2 Promoted Synthesis of Substituted Hydrazinecarbodithiolates. Org. Prep Proc. Intern 2022, 54, 569–577. DOI: 10.1080/00304948.2022.2111171. (i) Srivastava, N.; Rathore, B. K.; Vishnoi, R. K.; Bajpai, S. A Simple and Convenient Method for Synthesis of Artemisinin Dimer through Aliphatic Nitro Compounds. Asian J. Chem. 2020, 33, 49–52. DOI: 10.14233/ajchem.2021.22918. (j) Kishore, R.; Kamboj, M.; Shukla, M.; Chaturvedi, D.; Srivastava, N. Novel Strategy for Synthesis of Cyclic Dithiocarbamates Catalyzed by Triton-B. Asian J. Chem. 2019, 31, 1091–1094. DOI: 10.14233/ajchem.2019.21830. (k) Srivastava, N.; Saxena, M.; Shukla, M. Novel Synthesis of 5-Oxo-2-Thioxo-2,5-Dihydro-3-Thiophenecarboxylate Derivative in Non-Aqueous Medium. Asian J. Chem. 2019, 31, 176–180. DOI: 10.14233/ajchem.2019.21622. (l) Srivastava, N. Key Role of Ionic Liquids in the Cleaner and Greener Synthesis of Lactams. Res. J. Chem. Environ. 2021, 26, 125–130. DOI: 10.25303/2601rjce125130. (m) Vishnoi, R. K.; Kishore, R.; Chaturvedi, D.; Shukla, M.; Bajpai, S.; Srivastava, N. Synthesis and Antimicrobial Activity of Cyclic Dithiocarbamates Employing Triton-B/CS2 System. Asian J. Chem. 2021, 33, 1133–1136. DOI: 10.14233/ajchem.2021.23173. (n) Srivastava, N.; Kishore, R.; Chaturvedi, D. Novel and Efficient Method for the Synthesis of Cyclic Trithiocarbonates Employing Cs2CO3 and CS2 System. Res. J. Chem. Environ. 2021, 25, 142–148. DOI: 10.25303/2512rjce142148.
  • Richardson, D. R.; Tran, E. H.; Ponka, P. The Potential of Iron Chelators of the Pyridoxal Isonicotinoyl Hydrazone Class as Effective Antiproliferative Agents. Blood 1995, 86, 4295–4306. DOI: 10.1182/blood.V86.11.4295.bloodjournal86114295.
  • Stefani, C.; Jansson, P. J.; Gutierrez, E.; Bernhardt, P. V.; Richardson, D. R.; Kalinowski, D. S. Alkyl Substituted 29-Benzoylpyridine Thiosemicarbazone Chelators with Potent and Selective Anti-Neoplastic Activity: Novel Ligands That Limit Methemoglobin Formation. J. Med. Chem. 2013, 56, 357–370. DOI: 10.1021/jm301691s.
  • Stefani, C.; Punnia-Moorthy, G.; Lovejoy, D. B.; Jansson, P. J.; Kalinowski, D. S.; Sharpe, P. C.; Bernhardt, P. V.; Richardson, D. R. Halogenated 2’-Benzoylpyridine Thiosemicarbazone (XBpT) Chelators with Potent and Selective anti-Neoplastic Activity: Relationship to Intracellular Redox Activity. J. Med. Chem. 2011, 54, 6936–6948. DOI: 10.1021/jm200924c.
  • Kalinowski, D. S.; Sharpe, P. C.; Bernhardt, P. V.; Richardson, D. R. Design, Synthesis, and Characterization of New Iron Chelators with anti-Proliferative Activity: Structure-Activity Relationships of Novel Thiohydrazone Analogues. J. Med. Chem. 2007, 50, 6212–6225. DOI: 10.1021/jm070839q:.
  • Kalinowski, D. S.; Sharpe, P. C.; Bernhardt, P. V.; Richardson, D. R. Structure-Activity Relationships of Novel Iron Chelators for the Treatment of Iron Overload Disease: The Methyl Pyrazinylketone Isonicotinoyl Hydrazone Series. J. Med. Chem. 2008, 51, 331–344. DOI: 10.1021/jm7012562.
  • Lovejoy, D. B.; Sharp, D. M.; Seebacher, N.; Obeidy, P.; Prichard, T.; Stefani, C.; Basha, M. T.; Sharpe, P. C.; Jansson, P. J.; Kalinowski, D. S.; et al. Novel Second-Generation Di-2-Pyridylketone Thiosemicarbazones Show Synergism with Standard Chemotherapeutics and Demonstrate Potent Activity against Lung Cancer Xenografts after Oral and Intravenous Administration in Vivo. J. Med. Chem. 2012, 55, 7230–7244. DOI: 10.1021/jm300768u.
  • Richardson, D. R.; Sharpe, P. C.; Lovejoy, D. B.; Senaratne, D.; Kalinowski, D. S.; Islam, M.; Bernhardt, P. V. Dipyridyl Thiosemicarbazone Chelators with Potent and Selective Antitumor Activity Form Iron Complexes with Redox Activity. J. Med. Chem. 2006, 49, 6510–6521. DOI: 10.1021/jm0606342.
  • Kalinowski, D. S.; Yu, Y.; Sharpe, P. C.; Islam, M.; Liao, Y. T.; Lovejoy, D. B.; Kumar, N.; Bernhardt, P. V.; Richardson, D. R. Design, Synthesis, and Characterization of Novel Iron Chelators: Structure-Activity Relationships of the 2-Benzoylpyridine Thiosemicarbazone Series and Their 3-Nitrobenzoyl Analogues as Potent Antitumor Agents. J. Med. Chem. 2007, 50, 3716–3729. DOI: 10.1021/jm070445z.
  • Richardson, D.; Baker, E. Two Mechanisms of Iron Uptake from Transferrin by Melanoma Cells. The Effect of Desferrioxamine and Ferric Ammonium Citrate. J. Biol. Chem. 1992, 267, 13972–13979. DOI: 10.1016/S0021-9258(19)49665-8.
  • Richardson, D. R.; Baker, E. The Uptake of Iron and Transferrin by the Human Malignant Melanoma Cell. Biochim. Biophys. Acta. 1990, 1053, 1–12. DOI: 10.1016/0167-4889(90)90018-9.
  • Baker, E.; Richardson, D.; Gross, S.; Ponka, P. Evaluation of the Iron Chelation Potential of Hydrazones of Pyridoxal, Salicylaldehyde and 2-Hydroxy-1- Naphthylaldehyde Using the Hepatocyte in Culture. Hepatology 1992, 15, 492–501. DOI: 10.1002/hep.1840150323.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.