57
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Green conversion of CO2 by N-heterocyclic carbene-CO2 adducts grafted hierarchical porous silica microspheres

, , , & ORCID Icon
Pages 283-292 | Received 23 Aug 2023, Accepted 13 Mar 2024, Published online: 28 Mar 2024

References

  • Ma, D.; Li, B.; Liu, K.; Zhang, X.; Zou, W. J.; Yang, Y.; Li, G.; Shi, Z.; Feng, S. Bifunctional MOF Heterogeneous Catalysts Based on the Synergy of Dual Functional Sites for Efficient Conversion of CO2 under Mild and Co-Catalyst Free Conditions. J. Mater. Chem. A 2015, 3, 23136–23142. DOI: 10.1039/C5TA07026K.
  • Nandi, S.; Collins, S.; Chakraborty, D.; Banerjee, D.; Thallapally, P. K.; Woo, T. K.; Vaidhyanathan, R. Ultralow Parasitic Energy for Postcombustion CO2 Capture Realized in a Nickel Isonicotinate Metal–Organic Framework with Excellent Moisture Stability. J. Am. Chem. Soc. 2017, 139, 1734–1737. DOI: 10.1021/jacs.6b10455.
  • Wang, S.; Wu, Y.; Zhang, N.; He, G.; Xin, Q.; Wu, X.; Wu, H.; Cao, X.; Guiver, M. D.; Jiang, Z. A Highly Permeable Graphene Oxide Membrane with Fast and Selective Transport Nanochannels for Efficient Carbon Capture. Energy Environ. Sci. 2016, 9, 3107–3112. DOI: 10.1039/C6EE01984F.
  • Wu, Y.; Song, X.; Zhang, J.; Xu, S.; Gao, L.; Zhang, J.; Xiao, G. Mn-Based MOFs as Efficient Catalysts for Catalytic Conversion of Carbon Dioxide into Cyclic Carbonates and DFT Studies. Chem. Eng. Sci. 2019, 201, 288–297. DOI: 10.1016/j.ces.2019.02.032.
  • Maeda, C.; Taniguchi, T.; Ogawa, K.; Ema, T. Bifunctional Catalysts Based on m-Phenylene-Bridged Porphyrin Dimer and Trimer Platforms: Synthesis of Cyclic Carbonates from Carbon Dioxide and Epoxides. Angew. Chem. Int. Ed. Engl. 2014, 54, 134–138. DOI: 10.1002/anie.201409729.
  • Lee, C. W.; Cho, N. H.; Yang, K. D.; Nam, K. T. Reaction Mechanisms of the Electrochemical Conversion of Carbon Dioxide to Formic Acid on Tin Oxide Electrodes. ChemElectroChem 2017, 4, 2130–2136. DOI: 10.1002/celc.201700335.
  • Kabra, S. K.; Turpeinen, E.; Huuhtanen, M.; Keiski, R. L.; Yadav, G. D. Direct Synthesis of Formic Acid from Carbon Dioxide and Hydrogen: A Thermodynamic and Experimental Study Using Poly-Urea Encapsulated Catalysts. Chem. Eng. J. 2016, 285, 625–634. DOI: 10.1016/j.cej.2015.09.101.
  • Du, X.; Jiang, Z.; Su, D. S.; Wang, J. Research Progress on the Indirect Hydrogenation of Carbon Dioxide to Methanol. ChemSusChem 2016, 9, 322–332. DOI: 10.1002/cssc.201501013.
  • Chand, H.; Kumar, A.; Goswami, S.; Krishnan, V. Comparison of Catalytic Activity of Graphitic Carbon Nitrides Derived from Different Precursors for Carbon Dioxide Conversion. Fuel 2024, 357, 129757. DOI: 10.1016/j.fuel.2023.129757.
  • Banerjee, A.; Dick, G. R.; Yoshino, T.; Kanan, M. W. Carbon Dioxide Utilization via Carbonate-Promoted C–H Carboxylation. Nature 2016, 531, 215–219. DOI: 10.1038/nature17185.
  • Bae, K.; Kim, J.; Lim, C. K.; Nam, K. M.; Song, H. Colloidal Zinc Oxide- Copper(I) Oxide Nanocatalysts for Selective Aqueous Photocatalytic Carbon Dioxide Conversion into Methane. Nat. Commun. 2017, 8, 1156. DOI: 10.1038/s41467-017-01165-4.
  • Shaikh, R. R.; Pornpraprom, S.; D’Elia, V. Catalytic Strategies for the Cycloaddition of Pure, Diluted, and Waste CO2 to Epoxides under Ambient Conditions. ACS Catal. 2017, 8, 419–450. DOI: 10.1021/acscatal.7b03580.
  • Olajire, A. A. Recent Progress on the Nanoparticles-Assisted Greenhouse Carbon Dioxide Conversion Processes. J. CO2 Util. 2018, 24, 522–547. DOI: 10.1016/j.jcou.2018.02.012.
  • Cokoja, M.; Wilhelm, M. E.; Anthofer, M. H.; Herrmann, W. A.; Kühn, F. E. Synt Hesis of Cyclic Carbonates from Epoxides and Carbon Dioxide by Using Organoc Atalysts. ChemSusChem 2015, 8, 2436–2454. DOI: 10.1002/cssc.201500161.
  • Chand, H.; Kumar, A.; Krishnan, V. Borophene and Boron‐Based Nanosheets: Recent Advances in Synthesis Strategies and Applications in the Field of Environment and Energy. Adv. Mater. Inter. 2021, 8, 2100045. DOI: 10.1002/admi.202100045.
  • Zou, Y.; Ge, Y.; Zhang, Q.; Liu, W.; Li, X.; Cheng, G.; Ke, H. Polyamine- Functionalized Imidazolyl Poly(Ionic Liquid)s for the Efficient Conversion of CO2 into Cyclic Carbonates. Catal. Sci. Technol. 2022, 12, 273–281. DOI: 10.1039/D1CY01765A.
  • Zhang, Y.; Chen, G.; Wu, L.; Liu, K.; Zhong, H.; Long, Z.; Tong, M.; Yang, Z.; Dai, S. Two-in-One: Construction of Hydroxyl and Imidazolium-Bifunctionalized Ionic Networks in One-Pot toward Synergistic Catalytic CO2 Fixation. Chem. Commun. (Camb) 2020, 56, 3309–3312. DOI: 10.1039/c9cc09643d.
  • Wu, X.; Chen, C.; Guo, Z.; North, M.; Whitwood, A. C. Metal- and Halide-Free Catalyst for the Synthesis of Cyclic Carbonates from Epoxides and Carbon Dioxide. ACS Catal. 2019, 9, 1895–1906. DOI: 10.1021/acscatal.8b04387.
  • Sopeña, S.; Martin, E.; Escudero-Adán, E. C.; Kleij, A. W. Pushing the Limits with Squaramide-Based Organocatalysts in Cyclic Carbonate Synthesis. ACS Catal. 2017, 7, 3532–3539. DOI: 10.1021/acscatal.7b00475.
  • Song, Q.; Zhou, Z.; He, L. Efficient, Selective and Sustainable Catalysis of Carbon Dioxide. Green Chem. 2017, 19, 3707–3728. DOI: 10.1039/C7GC00199A.
  • Sodpiban, O.; Phungpanya, C.; Del Gobbo, S.; Arayachukiat, S.; Piromchart, T.; D'Elia, V. Rational Engineering of Single-Component Heterogeneous Catalysts Based on Abundant Metal Centers for the Mild Conversion of Pure and Impure CO2 to Cyclic Carbonates. Chem. Eng. J. 2021, 422, 129930. DOI: 10.1016/j.cej.2021.129930.
  • Prasad, D.; Patil, K. N.; Chaudhari, N. K.; Kim, H.; Nagaraja, B. M.; Jadhav, A. H. Paving Way for Sustainable Earth-Abundant Metal Based Catalysts for Chemical Fixation of CO2 into Epoxides for Cyclic Carbonate Formation. CarRv 2020, 64, 356–443. DOI: 10.1080/01614940.2020.1812212.
  • Prasad, D.; Patil, K. N.; Bhanushali, J. T.; Nagaraja, B. M.; Jadhav, A. H. Sustainable Fixation of CO2 into Epoxides to Form Cyclic Carbonates Using Hollow Marigold CuCo2O4 Spinel Microspheres as a Robust Catalyst. Catal. Sci. Technol. 2019, 9, 4393–4412. DOI: 10.1039/C9CY00945K.
  • Jadhav, A. H.; Thorat, G. M.; Lee, K.; Lim, A. C.; Kang, H.; Seo, J. G. Effect of Anion Type of Imidazolium Based Polymer Supported Ionic Liquids on the Solvent Free Synthesis of Cycloaddition of CO2 into Epoxide. Catal. Today 2016, 265, 56–67. DOI: 10.1016/j.cattod.2015.09.048.
  • Hu, L. L.; Xie, Q. J.; Tang, J. T.; Pan, C. Y.; Yu, G. P.; Tam, K. C. Co(III)-Salen Immobilized Cellulose Nanocrystals for Efficient Catalytic CO2 Fixation into Cyclic Carbonates under Mild Conditions. Carbohydr. Polym. 2021, 256, 117558. DOI: 10.1016/j.carbpol.2020.117558.
  • Chaugule, A. A.; Tamboli, A. H.; Kim, H. Ionic Liquid as a Catalyst for Utilization of Carbon Dioxide to Production of Linear and Cyclic Carbonate. Fuel 2017, 200, 316–332. DOI: 10.1016/j.fuel.2017.03.077.
  • Chand, H.; Choudhary, P.; Kumar, A.; Kumar, A.; Krishnan, V. Atmospheric Pressure Conversion of Carbon Dioxide to Cyclic Carbonates Using a Metal-Free Lewis Acid-Base Bifunctional Heterogeneous Catalyst. J. CO2 Util. 2021, 51, 101646. DOI: 10.1016/j.jcou.2021.101646.
  • Clegg, W.; Harrington, R. W.; North, M.; Pasquale, R. Cyclic Carbonate Synthesis Catalysed by Bimetallic Aluminium-Salen Complexes. Chemistry 2010, 16, 6828–6843. DOI: 10.1002/chem.201000030.
  • Sharma, N.; Dey, A. K.; Sathe, R. Y.; Kumar, A.; Krishnan, V.; Kumar, T. J. D.; Nagaraja, C. M. Highly Efficient Visible-Light-Driven Reduction of Cr(VI) from Water by Porphyrin-Based Metal–Organic Frameworks: Effect of Band Gap Engineering on the Photocatalytic Activity. Catal. Sci. Technol. 2020, 10, 7724–7733. DOI: 10.1039/D0CY00969E.
  • Maya, E. M.; Rangel-Rangel, E.; Díaz, U.; Iglesias, M. Efficient Cycloaddition of CO2 to Epoxides Using Novel Heterogeneous Organocatalysts Based on Tetramethylguanidine-Functionalized Porous Polyphenylenes. J. CO2 Util. 2018, 25, 170–179. DOI: 10.1016/j.jcou.2018.04.001.
  • Samikannu, A.; Konwar, L. J.; Mäki-Arvela, P.; Mikkola, J.-P. Renewable N- Doped Active Carbons as Efficient Catalysts for Direct Synthesis of Cyclic Carbonates from Epoxides and CO2. Appl. Catal. B 2019, 241, 41–51. DOI: 10.1016/j.apcatb.2018.09.019.
  • Zou, B.; Hu, C. Halogen-Free Processes for Organic Carbonate Synthesis from CO2. Curr. Opin. Green Sustain. 2017, 3, 11–16. DOI: 10.1016/j.cogsc.2016.10.007.
  • Moshikur, R. M.; Chowdhury, M. R.; Moniruzzaman, M.; Goto, M. Biocompatible Ionic Liquids and Their Applications in Pharmaceutics. Green Chem. 2020, 22, 8116–8139. DOI: 10.1039/D0GC02387F.
  • Okamura, H.; Hirayama, N. Recent Progress in Ionic Liquid Extraction for the Separation of Rare Earth Elements. Anal. Sci. 2020, 37, 119–130. DOI: 10.2116/analsci.20SAR11.
  • Verma, C.; Alrefaee, S. H.; Quraishi, M. A.; Ebenso, E. E.; Hussain, C. M. Recent Developments in Sustainable Corrosion Inhibition Using Ionic Liquids: A Review. J. Mol. Liq. 2021, 321, 114484. DOI: 10.1016/j.molliq.2020.114484.
  • Zhang, Y.; Cao, Y.-Y.; Wang, H. Multi-Interactions in Ionic Liquids for Natural Product Extraction. Molecules 2020, 26, 98. DOI: 10.3390/molecules26010098.
  • Long, G.; Wu, D.; Pan, H.; Zhao, T.; Hu, X. Imidazolium Hydrogen Carbonate Ionic Liquids: Versatile Organocatalysts for Chemical Conversion of CO2 into Valuable Chemicals. J. CO2 Util. 2020, 39, 101155. DOI: 10.1016/j.jcou.2020.101155.
  • Wang, X.; Dong, Q.; Xu, Z.; Wu, Y.; Gao, D.; Xu, Y.; Ye, C.; Wen, Y.; Liu, A.; Long, Z.; Chen, G. Hierarchically Nanoporous Copolymer with Built-in Carbene- CO2 Adducts as Halogen-Free Heterogeneous Organocatalyst towards Cycloaddition of Carbon Dioxide into Carbonates. Chem. Eng. J. 2021, 403, 126460. DOI: 10.1016/j.cej.2020.126460.
  • Zhou, H.; Wang, Y.; Zhang, W.; Qu, J.; Lu, X. N-Heterocyclic Carbene Functionalized MCM-41 as an Efficient Catalyst for Chemical Fixation of Carbon Dioxide. Green Chem. 2011, 13, 644. DOI: 10.1039/c0gc00541j.
  • Yang, L.; Wang, H. Recent Advances in Carbon Dioxide Capture, Fixation, and Activation by Using N-Heterocyclic Carbenes. ChemSusChem 2014, 7, 962–998. DOI: 10.1002/cssc.201301131.
  • Wang, Y.; Wang, Y.; Zhang, W.; Lu, X. Fast CO2 Sequestration, Activation, and Catalytic Transformation Using N-Heterocyclic Olefins. J. Am. Chem. Soc. 2013, 135, 11996–12003. DOI: 10.1021/ja405114e.
  • Thiel, K.; Zehbe, R.; Roeser, J.; Strauch, P.; Enthaler, S.; Thomas, A. A Polymer Analogous Reaction for the Formation of Imidazolium and NHC Based Porous Polymer Networks. Polym. Chem. 2013, 4, 1848. DOI: 10.1039/c2py20947k.
  • Chand, H.; Sharma, M.; Krishnan, V. Nanoarchitectonics of Vanadium Carbide MXenes for Separation and Catalytic Degradation of Contaminants. Sep. Purif. Technol. 2022, 292, 121032. DOI: 10.1016/j.seppur.2022.121032.
  • North, M.; Pasquale, R.; Young, C. Synthesis of Cyclic Carbonates from Epoxides and CO2. Green Chem. 2010, 12, 1514–1539. DOI: 10.1039/c0gc00065e.
  • Sekine, K.; Yamada, T. Silver-Catalyzed Carboxylation. Chem. Soc. Rev. 2016, 45, 4524–4532. DOI: 10.1039/c5cs00895f.
  • Yang, Y.; Bernardi, S.; Song, H.; Zhang, J.; Yu, M.; Reid, J. C.; Strounina, E.; Searles, D. J.; Yu, C. Anion Assisted Synthesis of Large Pore Hollow Dendritic Mesoporous Organosilica Nanoparticles: Understanding the Composition Gradient. Chem. Mater. 2016, 28, 704–707. DOI: 10.1021/acs.chemmater.5b03963.
  • Jagtap, S. R.; Bhanushali, M. J.; Panda, A. G.; Bhanage, B. M. Synthesis of Cyclic Carbonates from Carbon Dioxide and Epoxides Using Alkali Metal Halide Supported Liquid Phase Catalyst. Catal. Lett. 2006, 112, 51–55. DOI: 10.1007/s10562-006-0163-2.
  • Zanon, A.; Chaemchuen, S.; Mousavi, B.; Verpoort, F. 1 Zn-Doped ZIF-67 as Catalyst for the CO2 Fixation into Cyclic Carbonates. J. CO2 Util. 2017, 20, 282–291. DOI: 10.1016/j.jcou.2017.05.026.
  • Jiang, H.; Wang, A. Z.; Liu, H.; Qi, C. Reusable Polymer-Supported Amine- Copper Catalyst for the Formation of α-Alkylidene Cyclic Carbonates in Supercritical Carbon Dioxide. Eur. J. Org. Chem. 2008, 2008, 2309–2312. DOI: 10.1002/ejoc.200701165.
  • Luo, R.; Zhou, X.; Chen, S.; Li, Y.; Zhou, L.; Ji, H. Highly Efficient Synthesis of Cyclic Carbonates from Epoxides Catalyzed by Salen Aluminum Complexes with Built-in “CO2 Capture” Capability under Mild Conditions. Green Chem. 2014, 16, 1496–1506. DOI: 10.1039/C3GC42388C.
  • Rajabzadeh, M.; Khalifeh, R.; Eshghi, H.; Hafizi, A. Design and Synthesis of CuO@SiO2 Multi-Yolk@Shell and Its Application as a New Catalyst for CO2 Fixation Eeaction under Solventless Condition. J. Ind. Eng. Chem. 2020, 89, 458–469. DOI: 10.1016/j.jiec.2020.06.020.
  • Rajabzadeh, M.; Khalifeh, R.; Eshghi, H.; Sorouri, M. Design and Preparation of Hallow Mesoporous Silica Spheres Include CuO and Its Catalytic Performance for Synthesis of 1,2,3-Triazole Compounds via the Click Reaction in Water. Catal. Lett. 2019, 149, 1125–1134. DOI: 10.1007/s10562-019-02666-1.
  • Rezaei, F.; Ali Amrollahi, M.; Khalifeh, R. Design and Synthesis of Fe3O4@SiO2/Aza-Crown Ether-Cu(II) as a Novel and Highly Efficient Magnetic Nanocomposite Catalyst for the Synthesis of 1,2,3-Triazoles, 1-Substituted 1H- Tetrazoles and 5-Substituted 1H-Tetrazoles in Green Solvents. Inorg. Chim. Acta 2019, 489, 8–18. DOI: 10.1016/j.ica.2019.01.039.
  • Feng, J.; Liu, Y.; Liu, C.; Hu, W.; Zhang, C.; Li, S.; Song, Y.; Yu, C. The Impact of Ethanol and Chlorobenzene in the Structure Regulation of Dendritic Mesoporous Silica Nanoparticles. Microporous Mesoporous Mater. 2020, 307, 110504. DOI: 10.1016/j.micromeso.2020.110504.
  • Yu, Y.; Xing, J.; Pang, J.; Jiang, S.; Lam, K.; Yang, T.; Xue, Q.; Zhang, K.; Wu, P. Facile Synthesis of Size Controllable Dendritic Mesoporous Silica Nanoparticles. ACS Appl. Mater. Interfaces. 2014, 6, 22655–22665. DOI: 10.1021/am506653n.
  • Zou, H.; Dai, J.; Suo, J.; Ettelaie, R.; Li, Y.; Xue, N.; Wang, R.; Yang, H. Dual Metal Nanoparticles within Multicompartmentalized Mesoporous Organosilicas for Efficient Sequential Hydrogenation. Nat. Commun. 2021, 12, 4968. DOI: 10.1038/s41467-021-25226-x.
  • Ma, J. Z.; Sun, H. Y.; Zhang, Y.; Chen, D. W.; Hu, H. Y. Fabrication of Epidermal Growth Factor Imprinted and Demethylcantharidin Loaded Dendritic Mesoporous SilicaNanoparticle: An Integrated Drug Vehicle for Chemo- /Antibody Synergistic Cancer Therapy. J. Drug. Deliv. Sci. Technol 2021, 62, 102387. DOI: 10.1016/j.jddst.2021.102387.
  • Fujii, K.; Hashizume, H.; Shimomura, S.; Wakahara, T.; Ando, T. Synthesis and Optical Properties of Layered Inorganic-Imidazoline Monoliths. J. Inorg. Organomet. Polym. 2018, 29, 745–757. DOI: 10.1007/s10904-018-1048-8.
  • Park, T. J.; Jung, G. I.; Kim, E. H.; Koo, S. M. Development of Mesoporous Structures of Composite Silica Particles with Various Organic Functional Groups in the Presence and Absence of Ammonia Catalyst. J. Nanopart. Res. 2017, 19, 226. DOI: 10.1007/s11051-017-3928-1.
  • Miao, Y.; Zhou, X.; Bai, J.; Zhao, W.; Zhao, X. Hollow Polydopamine Spheres with Removable Manganese Oxide Nanoparticle Caps for Tumor Microenvironment-Responsive Drug Delivery. Chem. Eng. J. 2022, 430, 133089. DOI: 10.1016/j.cej.2021.133089.
  • Liu, M.; Li, T.; Zhang, C.; Zheng, Y.; Wu, C.; Zhang, J.; Zhang, K.; Zhang, Z. Fluorescent Carbon Dots Embedded in Mesoporous Silica Nanospheres: A Simple Platform for Cr(VI) Detection in Environmental Water. J. Hazard. Mater. 2021, 415, 125699. DOI: 10.1016/j.jhazmat.2021.125699.
  • Bian, Y.; Liu, B.; Liang, S.; Ding, B.; Zhao, Y.; Jiang, F.; Cheng, Z.; Kheraif, A. A. A.; Ma, P.; Lin, J. Cu-Based MOFs Decorated Dendritic Mesoporous Silica as Tumor Microenvironment Responsive Nanoreactor for Enhanced Tumor Multimodal Therapy. Chem. Eng. J. 2022, 435, 135046. DOI: 10.1016/j.cej.2022.135046.
  • Liu, B.; Feng, L.; Bian, Y.; Yuan, M.; Zhu, Y.; Yang, P.; Cheng, Z.; Lin, J. Mn2+ /Fe3+/Co2+ and Tetrasulfide Bond Co-Incorporated Dendritic Mesoporous Organosilica as Multifunctional Nanocarriers: One-Step Synthesis and Applications for Cancer Therapy. Adv. Healthcare Mater. 2022, 11, 2200665. DOI: 10.1002/adhm.202200665.
  • Liu, Q.; Zhao, Q.; Luo, M.; Yang, Z.; Wang, F.; Li, H. Dendritic Mesoporous Silica Nanosphere Supported Highly Dispersed Pd-CoOx Catalysts for Catalytic Oxidation of Toluene. Mol. Catal. 2022, 519, 112123. DOI: 10.1016/j.mcat.2022.112123.
  • Tang, J.; Yang, Y.; Qu, J.-L.; Ban, W.; Song, H.; Gu, Z.; Yang, Y.; Cai, L.; Theivendran, S.; Wang, Y.; et al. Mesoporous Sodium Four- Coordinate Aluminosilicate Nanoparticles Modulate Dendritic Cell Pyroptosis and Activate Innate and Adaptive Immunity. Chem. Sci. 2022, 13, 8507–8517. DOI: 10.1039/d1sc05319a.
  • Li, X.; Liu, X.; Liu, J.; Ren, L.; Hu, X.; Wu, Y.; Zhang, F.; Zhang, Z. The Efficient Catalytic Microsystem with Halogen-Free Catalyst for the Intensification on CO2 Cycloaddition. Appl. Catal. B 2021, 283, 119629. DOI: 10.1016/j.apcatb.2020.119629.
  • Laskowska, M.; Pastukh, O.; Fedorchuk, A.; Schabikowski, M.; Kowalczyk, P.; Zalasiński, M.; Laskowski, Ł. Nanostructured Silica with Anchoring Units: The 2D Solid Solvent for Molecules and Metal Ions. Int. J. Mol. Sci. 2020, 21, 8137. DOI: 10.3390/ijms21218137.
  • Ma, X.; Wang, X.; Song, C. “Molecular Basket” Sorbents for Separation of CO2 and H2S from Various Gas Streams. J. Am. Chem. Soc. 2009, 131, 5777–5783. DOI: 10.1021/ja8074105.
  • Shi, L.; Xu, S.; Zhang, Q.; Liu, T.; Wei, B.; Zhao, Y.; Meng, L.; Li, J. Ionic Liquid/Quaternary Ammonium Salt Integrated Heterogeneous Catalytic System for the Efficient Coupling of Carbon Dioxide with Epoxides. Ind. Eng. Chem. Res. 2018, 57, 15319–−15328. DOI: 10.1021/acs.iecr.8b04108.
  • Son, W.; Choi, J.; Ahn, W. Adsorptive Removal of Carbon Dioxide Using Polyethyleneimine-Loaded Mesoporous Silica Materials. Microporous Mesoporous Mater. 2008, 113, 31–40. DOI: 10.1016/j.micromeso.2007.10.049.
  • Zhou, H.; Zhang, W.; Liu, C.; Qu, J.; Lu, X. CO2 Adducts of N-Heterocyclic Carbenes Thermal Stability and Catalytic Activity toward the Coupling of CO2 with Epoxides. J. Org. Chem. 2008, 73, 8039–8044. DOI: 10.1021/jo801457r.
  • Kayaki, Y.; Yamamoto, M.; Ikariya, T. N-Heterocyclic Carbenes as Efficient Organocatalysts for CO2 Fixation Reactions. Angew. Chem. Int. Ed. Engl. 2009, 48, 4194–4197. DOI: 10.1002/anie.200901399.
  • Zhao, Y.; Han, B.; Liu, Z. Ionic-Liquid-Catalyzed Approaches under Metal-Free Conditions. Acc. Chem. Res. 2021, 54, 3172–3190. DOI: 10.1021/acs.accounts.1c00251.
  • Wang, X.; Zhou, Y.; Guo, Z.; Chen, G.; Li, J.; Shi, Y.; Liu, Y.; Wang, J. Heterogeneous Conversion of CO2 into Cyclic Carbonates at Ambient Pressure Catalyzed by Ionothermal-Derived Meso-Macroporous Hierarchical Poly(Ionic Liquid)s. Chem. Sci. 2015, 6, 6916–6924. DOI: 10.1039/c5sc02050f.
  • Ma, R.; He, L. N.; Liu, X. F.; Liu, X.; Wang, M. Y. DBU as Activator for the N - Iodosuccinimide Promoted Chemical Fixation of Carbon Dioxide with Epoxides. J. CO2 Util. 2017, 19, 28–32. DOI: 10.1016/j.jcou.2017.03.002.
  • Lang, X. D.; Yu, Y. C.; He, L. N. Zn-Salen Complexes with Multiple Hydrogen Bonding Donor and Protic Ammonium Bromide: Bifunctional Catalysts for CO2 Fixation with Epoxides at Atmospheric Pressure. J. Mol. Catal. A: Chem. 2016, 420, 208–215. DOI: 10.1016/j.molcata.2016.04.018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.