34
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Investigation of the effect of halide counterions on the potential corrosion inhibitor in imidazolium-based ionic liquids

, , , , , , & ORCID Icon show all
Pages 308-315 | Received 08 Jun 2023, Accepted 01 Apr 2024, Published online: 15 May 2024

References

  • Jiawei, K.; Yan, J.; Kunpeng, Z.; Pengju, R. Experimental Investigation on the Characteristics of Acid-Etched Fractures in Acid Fracturing by an Improved True Tri-Axial Equipment. J. Pet. Sci. Eng. 2020, 184, 106471. DOI: 10.1016/j.petrol.2019.106471.
  • Mandal, S.; Bej, S.; Banerjee, P. Insights into the Uses of Two Azine Decorated d10-MOFs for Corrosion Inhibition Application on Mild Steel Surface in Saline Medium: Experimental as Well as Theoretical Investigation. J. Mol. Liq. 2023, 381, 121789. DOI: 10.1016/j.molliq.2023.121789.
  • Singh, A.; Ansari, K. R.; Ali, I. H.; Lin, Y.; Murmu, M.; Banerjee, P. Evaluation of Corrosion Mitigation Properties of Pyridinium-Based Ionic Liquids on Carbon Steel in 15% HCl under the Hydrodynamic Condition: Experimental, Surface, and Computational Approaches. J. Mol. Liq. 2023, 376, 121408. DOI: 10.1016/j.molliq.2023.121408.
  • Singh, A.; Ansari, K. R.; Quraishi, M. A.; Lgaz, H.; Lin, Y. Synthesis and Investigation of Pyran Derivatives as Acidizing Corrosion Inhibitors for N80 Steel in Hydrochloric Acid: Theoretical and Experimental Approaches. J. Alloys Compd. 2018, 762, 347–362. DOI: 10.1016/j.jallcom.2018.05.236.
  • Li, J.; Li, D.; Zhou, F.; Feng, D.; Xia, Y.; Liu, W. Tribological and Corrosive Properties of Ionic Liquids Containing Triazole Functional Groups. Ind. Lubr. Tribol. 2015, 67, 210–215. DOI: 10.1108/ILT-04-2013-0045.
  • Likhanova, N. V.; Olivares-Xomet, O.; Guzmán-Lucero, D.; Domínguez-Aguilar, M. A.; Nava, N.; Corrales-Luna, M.; Mendoza, M. C. Corrosion Inhibition of Carbon Steel in Acidic Environment by Imidazolium Ionic Liquids Containing Vinyl-Hexafluorophosphate as Anion. Int. J. Electrochem. Sci. 2011, 6, 4514–4536. DOI: 10.1016/S1452-3981(23)18346-5.
  • Echihi, S.; Benzbiria, N.; Belghiti, M. E.; El Fal, M.; Boudalia, M.; Essassi, E. M.; Guenbour, A.; Bellaouchou, A.; Tabyaoui, M.; Azzi, M. Corrosion Inhibition of Copper by Pyrazole Pyrimidine Derivative in Synthetic Seawater: Experimental and Theoretical Studies. Mater. Today: Proc. 2021, 37, 3958–3966. DOI: 10.1016/j.matpr.2020.09.264.
  • Yeganegi, S.; Sokhanvaran, V.; Soltanabadi, A. Study of Thermodynamic Properties of Imidazolium-Based Ionic Liquids and Investigation of the Alkyl Chain Length Effect by Molecular Dynamics Simulation. Mol. Simul. 2013, 39, 1070–1078. DOI: 10.1080/08927022.2013.794273.
  • Zhang, Q. B.; Hua, Y. X. Corrosion Inhibition of Mild Steel by Alkylimidazolium Ionic Liquids in Hydrochloric Acid. Electrochim. Acta 2009, 54, 1881–1887. DOI: 10.1016/j.electacta.2008.10.025.
  • Ashassi-Sorkhabi, H.; Es’haghi, M. Corrosion Inhibition of Mild Steel in Acidic Media by [BMIm]Br Ionic Liquid. Mater. Chem. Phys. 2009, 114, 267–271. DOI: 10.1016/j.matchemphys.2008.09.019.
  • Kamali Ardakani, E.; Kowsari, E.; Ehsani, A. Imidazolium-Derived Polymeric Ionic Liquid as a Green Inhibitor for Corrosion Inhibition of Mild Steel in 1.0 M HCl: Experimental and Computational Study. Colloids Surf. A 2020, 586, 124195. DOI: 10.1016/j.colsurfa.2019.124195.
  • Mashuga, M. E.; Olasunkanmi, L. O.; Adekunle, A. S.; Yesudass, S.; Kabanda, M. M.; Ebenso, E. E. Adsorption, Thermodynamic and Quantum Chemical Studies of 1-Hexyl-3-Methylimidazolium Based Ionic Liquids as Corrosion Inhibitors for Mild Steel in HCl. Materials 2015, 8, 3607–3632. DOI: 10.3390/ma8063607.
  • Murulana, L. C.; Singh, A. K.; Shukla, S. K.; Kabanda, M. M.; Ebenso, E. E. Experimental and Quantum Chemical Studies of Some Bis(Trifluoromethyl-Sulfonyl) Imide Imidazolium-Based Ionic Liquids as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Solution. Ind. Eng. Chem. Res. 2012, 51, 13282–13299. DOI: 10.1021/ie300977d.
  • Sasikumar, Y.; Adekunle, A.; Olasunkanmi, L. O.; Bahadur, I.; Baskar, R.; Kabanda, M. M.; Obot, I.; Ebenso, E. E. Experimental, Quantum Chemical and Monte Carlo Simulation Studies on the Corrosion Inhibition of Some Alkyl Imidazolium Ionic Liquids Containing Tetrafluoroborate Anion on Mild Steel in Acidic Medium. J. Mol. Liq. 2015, 211, 105–118. DOI: 10.1016/j.molliq.2015.06.052.
  • Parveen, G.; Bashir, S.; Thakur, A.; Saha, S. K.; Banerjee, P.; Kumar, A. Experimental and Computational Studies of Imidazolium Based Ionic Liquid 1-Methyl-3-Propylimidazolium Iodide on Mild Steel Corrosion in Acidic Solution. Mater. Res. Express 2019, 7, 016510. DOI: 10.1088/2053-1591/ab5c6a.
  • Belghiti, M. E.; Ouadi, Y. E.; Echihi, S.; Elmelouky, A.; Outada, H.; Karzazi, Y.; Bakasse, M.; Jama, C.; Bentiss, F.; Dafali, A. Anticorrosive Properties of Two 3,5-Disubstituted-4-Amino-1,2,4-Triazole Derivatives on Copper in Hydrochloric Acid Environment: Ac Impedance, Thermodynamic and Computational Investigations. Surf. Interfaces 2020, 21, 100692. DOI: 10.1016/j.surfin.2020.100692.
  • Cherrak, K.; Belghiti, M. E.; Berrissoul, A.; El Massaoudi, M.; El Faydy, M.; Taleb, M.; Radi, S.; Zarrouk, A.; Dafali, A. Pyrazole Carbohydrazide as Corrosion Inhibitor for Mild Steel in HCl Medium: Experimental and Theoretical Investigations. Surf. Interfaces 2020, 20, 100578. DOI: 10.1016/j.surfin.2020.100578.
  • Chen, Z.; Zhong, W.; Liu, S.; Zou, T.; Zhang, K.; Gong, C.; Guo, W.; Kong, F.; Nie, L.; Hu, S.; Wang, H. Highly Stereodivergent Synthesis of Chiral C4-Ester-Quaternary Pyrrolidines: A Strategy for the Total Synthesis of Spirotryprostatin A. Org. Lett. 2023, 25, 3391–3396. DOI: 10.1021/acs.orglett.3c00904.
  • Gurjar, S.; Sharma, S. K.; Sharma, A.; Ratnani, S. Performance of Imidazolium Based Ionic Liquids as Corrosion Inhibitors in Acidic Medium: A Review. Appl. Surf. Sci. Adv. 2021, 6, 100170. DOI: 10.1016/j.apsadv.2021.100170.
  • Li, H.; Zhang, Y.; Li, C.; Zhou, Z.; Nie, X.; Chen, Y.; Cao, H.; Liu, B.; Zhang, N.; Said, Z.; et al. Cutting Fluid Corrosion Inhibitors from Inorganic to Organic: Progress and Applications. Korean J. Chem. Eng. 2022, 39, 1107–1134. DOI: 10.1007/s11814-021-1057-0.
  • Zhang, Z.; Hou, Z.-W.; Chen, H.; Li, P.; Wang, L. Electrochemical Electrophilic Bromination/Spirocyclization of N-Benzyl-Acrylamides to Brominated 2-Azaspiro[4.5]Decanes. Green Chem. 2023, 25, 3543–3548. DOI: 10.1039/D3GC00728F.
  • Gurjar, S.; Ratnani, S.; Kandwal, P.; Tiwari, K. K.; Sharma, A.; Sharma, S. K. Experimental and Theoretical Studies of 1-Benzyl Pyridazinium Bromide as Green Inhibitor for Mild Steel Corrosion. E-Prime 2022, 2, 100054. DOI: 10.1016/j.prime.2022.100054.
  • Gurjar, S.; Sharma, S. K.; Sharma, A.; Ratnani, S. Pyridazinium Based Ionic Liquids as Green Corrosion Inhibitors: An Overview. Electrochem. Sci. Adv. 2022, 2, e2100110. DOI: 10.1002/elsa.202100110.
  • Verma, C.; Ebenso, E. E.; Quraishi, M. Ionic Liquids as Green and Sustainable Corrosion Inhibitors for Metals and Alloys: An Overview. J. Mol. Liq. 2017, 233, 403–414. DOI: 10.1016/j.molliq.2017.02.111.
  • Welton, T. Ionic Liquids: A Brief History. Biophys. Rev. 2018, 10, 691–706. DOI: 10.1007/s12551-018-0419-2.
  • Zhang, M.; Ettelaie, R.; Yan, T.; Zhang, S.; Cheng, F.; Binks, B. P.; Yang, H. Ionic Liquid Droplet Microreactor for Catalysis Reactions Not at Equilibrium. J. Am. Chem. Soc. 2017, 139, 17387–17396. DOI: 10.1021/jacs.7b07731.
  • Bavoh, C. B.; Yuha, Y. B. M.; Tay, W.; Ofei, T. N.; Lal, B.; Mukhtar, H. Experimental and Modelling of the Impact of Quaternary Ammonium Salts/Ionic Liquid on the Rheological and Hydrate Inhibition Properties of Xanthan Gum Water-Based Muds for Drilling Gas Hydrate-Bearing Rocks. J. Pet. Sci. Eng. 2019, 183, 106468. DOI: 10.1016/j.petrol.2019.106468.
  • El-Hajjaji, F.; Messali, M.; de Yuso, M. M.; Rodríguez-Castellón, E.; Almutairi, S.; Bandosz, T. J.; Algarra, M. Effect of 1-(3-Phenoxypropyl) Pyridazin-1-Ium Bromide on Steel Corrosion Inhibition in Acidic Medium. J. Colloid Interface Sci. 2019, 541, 418–424. DOI: 10.1016/j.jcis.2019.01.113.
  • Messali, M. Eco-Friendly Synthesis of a New Class of Pyridinium-Based Ionic Liquids with Attractive Antimicrobial Activity. Molecules 2015, 20, 14936–14949. DOI: 10.3390/molecules200814936.
  • Ofoegbu, S. U.; Galvão, T. L. P.; Gomes, J. R. B.; Tedim, J.; Nogueira, H. I. S.; Ferreira, M. G. S.; Zheludkevich, M. L. Corrosion Inhibition of Copper in Aqueous Chloride Solution by 1H-1,2,3-Triazole and 1,2,4-Triazole and Their Combinations: Electrochemical, Raman and Theoretical Studies. Phys. Chem. Chem. Phys. 2017, 19, 6113–6129. DOI: 10.1039/C7CP00241F.
  • Madkour, L. H.; Elshamy, I. Experimental and Computational Studies on the Inhibition Performances of Benzimidazole and Its Derivatives for the Corrosion of Copper in Nitric Acid. Int. J. Ind. Chem. 2016, 7, 195–221. DOI: 10.1007/s40090-015-0070-8.
  • Quartarone, G.; Moretti, G.; Bellomi, T.; Capobianco, G.; Zingales, A. Using Indole to Inhibit Copper Corrosion in Aerated 0.5 M Sulfuric Acid. Corrosion 1998, 54, 606–618. DOI: 10.5006/1.3287636.
  • Quartarone, G.; Zingales, A.; Bellomi, T.; Bonaldo, L.; Gajo, M.; Gajo, G.; Paolucci, G. Corrosion Inhibition of Copper in Aerated 0.5 M Sulfuric Acid by Indole-2-Carboxylic Acid. Corrosion 2005, 61, 1041–1049. NACE-05111041. DOI: 10.5006/1.3280620.
  • Quartarone, G.; Battilana, M.; Bonaldo, L.; Tortato, T. Investigation of the Inhibition Effect of Indole-3-Carboxylic Acid on the Copper Corrosion in 0.5 M H2SO4. Corros. Sci. 2008, 50, 3467–3474. DOI: 10.1016/j.corsci.2008.09.032.
  • Quartarone, G.; Zingales, A.; Bellomi, T.; Bortolato, D.; Capobianco, G. Study of Inhibition Mechanism and Efficiency of Indole-5-Carboxylic Acid on Corrosion of Copper in Aerated 0·5 M H2SO4, Br. Corros. J. 2000, 35, 304–310. DOI: 10.1179/000705900101501399.
  • Quartarone, G.; Bellomi, T.; Zingales, A. Inhibition of Copper Corrosion by Isatin in Aerated 0.5 M H2SO4. Corros. Sci. 2003, 45, 715–733. DOI: 10.1016/S0010-938X(02)00134-8.
  • Cramer, C. J. Essentials of Computational Chemistry: Theories and Models, John Wiley & Sons, 2013.
  • Ozawa, R.; Hayashi, S.; Saha, S.; Kobayashi, A.; Hamaguchi, H. O. Rotational Isomerism and Structure of the 1-Butyl-3-Methylimidazolium Cation in the Ionic Liquid State. Chem. Lett. 2003, 32, 948–949. DOI: 10.1246/cl.2003.948.
  • Saha, S.; Hayashi, S.; Kobayashi, A.; Hamaguchi, H. O. Crystal Structure of 1-Butyl-3-Methylimidazolium Chloride. A Clue to the Elucidation of the Ionic Liquid Structure. Chem. Lett. 2003, 32, 740–741. DOI: 10.1246/cl.2003.740.
  • Wang, Y.; Li, H.; Han, S. The Chemical Nature of the ⊕C-H⋯X- (X = Cl or Br) Interaction in Imidazolium Halide Ionic Liquids. J. Chem. Phys. 2006, 124, 044504. DOI: 10.1063/1.2161174.
  • Ebenso, E. E. Synergistic Effect of Halide Ions on the Corrosion Inhibition of Aluminium in H2SO4 Using 2-Acetylphenothiazine. Mater. Chem. Phys. 2003, 79, 58–70. DOI: 10.1016/S0254-0584(02)00446-7.
  • Eddy, N. O.; Awe, F. E.; Gimba, C. E.; Ibisi, N. O.; Ebenso, E. E. QSAR, Experimental and Computational Chemistry Simulation Studies on the Inhibition Potentials of Some Amino Acids for the Corrosion of Mild Steel in 0.1 M HCl. Int. J. Electrochem. Sci. 2001, 6, 931–957. DOI: 10.1016/S1452-3981(23)15046-2.
  • Obi-Egbedi, N. O.; Obot, I. B.; El-Khaiary, M. I.; Umoren, S. A.; Ebenso, E. E. Computational Simulation and Statistical Analysis on the Relationship between Corrosion Inhibition Efficiency and Molecular Structure of Some Phenanthroline Derivatives on Mild Steel Surface. Int. J. Electrochem. Sci. 2011, 6, 5649–5675. DOI: 10.1016/S1452-3981(23)18435-5.
  • Yousefi, A.; Javadian, S.; Dalir, N.; Kakemam, J.; Akbari, J. Imidazolium-Based Ionic Liquids as Modulators of Corrosion Inhibition of SDS on Mild Steel in Hydrochloric Acid Solutions: Experimental and Theoretical Studies. RSC Adv. 2015, 5, 11697–11713. DOI: 10.1039/C4RA10995C.
  • Kaya, S.; Kaya, C. A New Method for Calculation of Molecular Hardness: A Theoretical Study. Comput. Theor. Chem. 2015, 1060, 66–70. DOI: 10.1016/j.comptc.2015.03.004.
  • Parr, R. G.; Chattaraj, P. K. Principle of Maximum Hardness. J. Am. Chem. Soc. 1991, 113, 1854–1855. DOI: 10.1021/ja00005a072.
  • Feng, L.; Zhang, S.; Lu, Y.; Tan, B.; Chen, S.; Guo, L. Synergistic Corrosion Inhibition Effect of Thiazolyl-Based Ionic Liquids between Anions and Cations for Copper in HCl Solution. Appl. Surf. Sci. 2019, 483, 901–911. DOI: 10.1016/j.apsusc.2019.03.299.
  • Zaky, M.; Nessim, M.; Deyab, M. Synthesis of New Ionic Liquids Based on Dicationic Imidazolium and Their Anti-Corrosion Performances. J. Mol. Liq. 2019, 290, 111230. DOI: 10.1016/j.molliq.2019.111230.
  • Alrefaee, S. H. Effect of Alkyl Chain Length and Halide Ions on the Corrosion Inhibition Potential of Imidazolium and Pyridinium Based Ionic Liquids: Computational Studies. J. Mol. Liq. 2021, 344, 117848. DOI: 10.1016/j.molliq.2021.117848.
  • Xiao, C.; Wibisono, N.; Adidharma, H. Dialkylimidazolium Halide Ionic Liquids as Dual Function Inhibitors for Methane Hydrate. Chem. Eng. Sci. 2010, 65, 3080–3087. DOI: 10.1016/j.ces.2010.01.033.
  • Cui, F.; Ni, Y.; Jiang, J.; Ni, L.; Wang, Z. Experimental and Theoretical Studies of Five Imidazolium-Based Ionic Liquids as Corrosion Inhibitors for Mild Steel in H2S and HCl Solutions. Chem. Eng. Commun. 2021, 208, 1580–1593. DOI: 10.1080/00986445.2020.1802257.
  • Yaqo, E. A.; Anaee, R. A.; Abdulmajeed, M. H.; Tomi, I. H.; Kadhim, M. M. Aminotriazole Derivative as Anti‐Corrosion Material for Iraqi Kerosene Tanks: Electrochemical, Computational and the Surface Study. ChemistrySelect 2019, 4, 9883–9892. DOI: 10.1002/slct.201902398.
  • Goulart, C. M.; Esteves-Souza, A.; Martinez-Huitle, C. A.; Rodrigues, C. J. F.; Maciel, M. A. M.; Echevarria, A. Experimental and Theoretical Evaluation of Semicarbazones and Thiosemicarbazones as Organic Corrosion Inhibitors. Corros. Sci. 2013, 67, 281–291. DOI: 10.1016/j.corsci.2012.10.029.
  • Zhang, G.; Musgrave, C. B. Comparison of DFT Methods for Molecular Orbital Eigenvalue Calculations. J. Phys. Chem. A 2007, 111, 1554–1561. DOI: 10.1021/jp061633o.
  • Miertuš, S.; Scrocco, E.; Tomasi, J. Electrostatic Interaction of a Solute with a Continuum. A Direct Utilizaion of AB Initio Molecular Potentials for the Prevision of Solvent Effects. Chem. Phys. 1981, 55, 117–129. DOI: 10.1016/0301-0104(81)85090-2.
  • Kruse, H.; Goerigk, L.; Grimme, S. Why the Standard B3LYP/6-31G* Model Chemistry Should Not Be Used in DFT Calculations of Molecular Thermochemistry: Understanding and Correcting the Problem. J. Org. Chem. 2012, 77, 10824–10834. DOI: 10.1021/jo302156p.
  • Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; et al. General Atomic and Molecular Electronic Structure System. J. Comput. Chem. 1993, 14, 1347–1363. DOI: 10.1002/jcc.540141112.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.