44
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

In silico and in vitro inhibition abilities of novel benzene sulfonamides on carbonic anhydrase and choline esterases

, , , ORCID Icon, & ORCID Icon
Pages 439-451 | Received 04 Oct 2023, Accepted 01 Jun 2024, Published online: 01 Jul 2024

References

  • DeTure, M. A.; Dickson, D. W. The Neuropathological Diagnosis of Alzheimer’s Disease. Mol. Neurodegener. 2019, 14, 32. DOI: 10.1186/s13024-019-0333-5.
  • Dincel, E. D.; Başoğlu‐Ünal, F.; Kuran, E. D.; Kayra, T.; Aydın, N.; Kanber, E.; Gülçin, İ.; Ulusoy‐Güzeldemirci, N. Design, Synthesis, and Evaluation of Novel Bistrifluoromethyl-Based Hydrazones as Dual İnhibitors of Acetylcholinesterase and Carbonic Anhydrase Enzymes for Alzheimer’s Disease. Chem. Biol. Drug Des. 2024, 103, e14482. DOI: 10.1111/cbdd.14482.
  • Abdoli, M.; Bonardi, A.; Supuran, C. T.; Žalubovskis, R. Investigation of Novel Alkyl/Benzyl (4-Sulphamoylphenyl)Carbamimidothioates as Carbonic Anhydrase İnhibitors. J. Enzyme Inhib. Med. Chem. 2023, 38, 2152811. DOI: 10.1080/14756366.2022.2152811.
  • Wang, S.; Blahut, M.; Wu, Y.; Philipkosky, K. E.; Outten, F. W. Communication between Binding Sites Is Required for YqjI Regulation of Target Promoters within the yqjH-yqjI Intergenic Region. J. Bacteriol. 2014, 196, 3199–3207. DOI: 10.1128/jb.01835-14.
  • Gocer, H.; Aslan, A.; Gülçin, İ.; Supuran, C. T. Spirobisnaphthalenes Effectively İnhibit Carbonic Anhydrase. J. Enzyme Inhib. Med. Chem. 2015, 31, 1–5. DOI: 10.3109/14756366.2015.1043298.
  • Çetinkaya, Y.; Göçer, H.; Göksu, S.; Gülçin, İ. Synthesis and Carbonic Anhydrase İsoenzymes I and II İnhibitory Effects of Novel Benzylamine Derivatives. J. Enzyme Inhib. Med. Chem. 2014, 29, 168–174. DOI: 10.3109/14756366.2012.763163.
  • Akıncıoğlu, A.; Akbaba, Y.; Göçer, H.; Göksu, S.; Gülçin, İ.; Supuran, C. T. Novel Sulfamides as Potential Carbonic Anhydrase İsoenzymes İnhibitors. Bioorg. Med. Chem. 2013, 21, 1379–1385. DOI: 10.1016/j.bmc.2013.01.019.
  • Artunç, T.; Çetinkaya, Y.; Göçer, H.; Gülçin, İ.; Menzek, A.; Şahin, E.; Supuran, C. T. Synthesis of 4-[2-(3,4-Dimethoxybenzyl)Cyclopentyl]-1,2-Dimethoxybenzene Derivatives and Evaluations of Their Carbonic Anhydrase Isoenzymes Inhibitory Effects. Chem. Biol. Drug Des. 2016, 87, 594–607. DOI: 10.1111/cbdd.12695.
  • Moi, D.; Vittorio, S.; Angeli, A.; Balboni, G.; Supuran, C. T.; Onnis, V. Investigation on Hydrazonobenzenesulfonamides as Human Carbonic Anhydrase I, II, IX and XII Inhibitors. Molecules 2023, 28, 91. DOI: 10.3390/molecules28010091.
  • Oztürk Sarikaya, S. B.; Topal, F.; Sentürk, M.; Gülçin, I.; Supuran, C. T. In Vitro İnhibition of α-Carbonic Anhydrase İsozymes by Some Phenolic Compounds. Bioorg. Med. Chem. Lett. 2011, 21, 4259–4262. DOI: 10.1016/j.bmcl.2011.05.071.
  • Taslimi, P.; Gülçin, İ.; Öztaşkın, N.; Çetinkaya, Y.; Göksu, S.; Alwasel, S. H.; Supuran, C. T. The Effects of Some Bromophenols on Human Carbonic Anhydrase İsoenzymes. J. Enzyme Inhib. Med. Chem. 2016, 31, 603–607. DOI: 10.3109/14756366.2015.1054820.
  • Aksu, K.; Akıncıoğlu, H.; Akıncıoğlu, A.; Göksu, S.; Tümer, F.; Gülçin, İ. Synthesis of Novel Sulfamides İncorporating Phenethylamines and Determination of Their İnhibition Profiles against Some Metabolic Enzymes. Arch. Pharm. 2018, 351, 1800150. DOI: 10.1002/ardp.201800150.
  • Gokcen, T.; Al, M.; Topal, M.; Gulcin, I.; Ozturk, T.; Goren, A. C. Synthesis of Some Natural Sulphonamide Derivatives as Carbonic Anhydrase İnhibitors. Org. Commun. 2017, 10, 15–23. DOI: 10.25135/acg.oc.4.16.05.418.
  • Gök, N.; Akıncıoğlu, A.; Erümit Binici, E.; Akıncıoğlu, H.; Kılınç, N.; Göksu, S. Synthesis of Novel Sulfonamides with anti-Alzheimer and Antioxidant Capacities. Arch. Pharm. 2021, 354, 2000496. DOI: 10.1002/ardp.202000496.
  • Yıldırım, A.; Atmaca, U.; Keskin, A.; Topal, M.; Çelik, M.; Gülçin, İ.; Supuran, C. T. N-Acylsulfonamides Strongly İnhibit Human Carbonic Anhydrase İsoenzymes I and II. Bioorg. Med. Chem. 2015, 23, 2598–2605. DOI: 10.1016/j.bmc.2014.12.054.
  • Tugrak, M.; Gul, H. I.; Akincioglu, H.; Gulcin, I. New Chalcone Derivatives with Pyrazole and Sulfonamide Pharmacophores as Carbonic Anhydrase Inhibitors. LDDD. 2021, 18, 191–198. DOI: 10.2174/1570180817999201001160414.
  • Akıncıoğlu, H.; Gülçin, İ. Potent Acetylcholinesterase Inhibitors: Potential Drugs for Alzheimer’s Disease. Mini Rev. Med. Chem. 2020, 20, 703–715. DOI: 10.2174/1389557520666200103100521.
  • Žnidaršič, N.; Štrbenc, M.; Grgurevič, N.; Snoj, T. Potential Revival of Cholinesterase İnhibitors as Drugs in Veterinary Medicine. Front. Vet. Sci. 2023, 10, 1125618. DOI: 10.3389/fvets.2023.1125618.
  • El-Sayed, N. A. E.; Farag, A. E. S.; Ezzat, M. A. F.; Akincioglu, H.; Gülçin, İ.; Abou-Seri, S. M. Design, Synthesis, in Vitro and in Vivo Evaluation of Novel Pyrrolizine-Based Compounds with Potential Activity as Cholinesterase İnhibitors and anti-Alzheimer’s Agents. Bioorg. Chem. 2019, 93, 103312. DOI: 10.1016/j.bioorg.2019.103312.
  • Davies, T. Q.; Tilby, M. J.; Skolc, D.; Hall, A.; Willis, M. C. Primary Sulfonamide Synthesis Using the Sulfinylamine Reagent N-Sulfinyl-O-(Tert-Butyl)Hydroxylamine, t-BuONSO. Org. Lett. 2020, 22, 9495–9499. DOI: 10.1021/acs.orglett.0c03505.
  • Batool, M.; Afzal, Z.; Junaid, H. M.; Solangi, A. R.; Hassan, A. Sulfonamides as Optical Chemosensors. Crit. Rev. Anal. Chem. 2022, 1–28. DOI: 10.1080/10408347.2022.2105135.
  • Tačić, A.; Nikolić, V.; Nikolić, L.; Savić, I. Antimikrobni Sulfonamidni Lekovi. Adv. Technol 2017, 6, 58–71. DOI: 10.5937/savteh1701058T.
  • Supuran, C. T.; Briganti, F.; Tilli, S.; Chegwidden, W. R.; Scozzafava, A. Carbonic Anhydrase İnhibitors: Sulfonamides as Antitumor Agents? Bioorg. Med. Chem. 2001, 9, 703–714. DOI: 10.1016/S0968-0896(00)00288-1.
  • Gangapuram, M.; Mazzio, E.; Eyunni, S.; Soliman, K. F.; Redda, K. K. Synthesis and Biological Evaluation of Substituted N-[3-(1H-Pyrrol-1-Yl)Methyl]-1,2,5,6-Tetrahydropyridin-1-Yl]Benzamide/Benzene Sulfonamides as Anti-Inflammatory Agents. Arch. Pharm. 2014, 347, 360–369. DOI: 10.1002/ardp.201300379.
  • Chohan, Z. H.; Shad, H. A.; Supuran, C. T. Synthesis, Characterization and Biological Studies of Sulfonamide Schiff’s Bases and Some of Their Metal Derivatives. J. Enzyme Inhib. Med. Chem. 2012, 27, 58–68. DOI: 10.3109/14756366.2011.574623.
  • Owa, T.; Nagasu, T. Novel Sulphonamide Derivatives for the Treatment of Cancer. Expert Opin. Ther. Pat. 2000, 10, 1725–1740. DOI: 10.1517/13543776.10.11.1725.
  • Akıncıoğlu, A.; Topal, M.; Gülçin, İ.; Göksu, S. Novel Sulphamides and Sulphonamides Incorporating the Tetralin Scaffold as Carbonic Anhydrase and Acetylcholine Esterase Inhibitors. Arch. Pharm. 2014, 347, 68–76. DOI: 10.1002/ardp.201300273.
  • Ogden, R. C.; Flexner, C. W. Protease Inhibitors in AIDS Therapy. Marcel Dekker: New York, Basel, 2001.
  • Lee, V. J. Anti-Gram-Positive Agents of Natural Product Origins, Volume 7, Comprehensive Medicinal Chemistry II. Ed: Taylor, J. B.; Triggle, D. J. Adesis, Inc. New Castle, DE, USA, 2007, 653–671.
  • Göçer, H.; Akıncıoğlu, A.; Öztaşkın, N.; Göksu, S.; Gülçin, İ. Synthesis, Antioxidant, and Antiacetylcholinesterase Activities of Sulfonamide Derivatives of Dopamine-Related Compounds. Arch. Pharm. (Weinheim) 2013, 346, 783–792. DOI: 10.1002/ardp.201300228.
  • Mok, B. L.; J. The Synthesis of Functionalized Sulfonamides., PhD Thesis, Chemistry Department, University College, London, U.K, 2008.
  • Keil, K.; Frerichs, V. A.; DiFrancesco, R.; Morse, G. Reverse Phase High-Performance Liquid Chromatography Method for the Analysis of Amprenavir, Efavirenz, Indinavir, Lopinavir, Nelfinavir and Its Active Metabolite (M8), Ritonavir, and Saquinavir in Heparinized Human Plasma. Ther. Drug Monit. 2003, 25, 340–346. DOI: 10.1097/00007691-200306000-00015.
  • Yan, B.; Peng, Z.; Xing, X.; Du, C. Glibenclamide İnduces Apoptosis by Activating Reactive Oxygen Species Dependent JNK Pathway in Hepatocellular Carcinoma Cells. Biosci. Rep. 2017, 37, BSR20170685. DOI: 10.1042/BSR20170685.
  • Han, T.; Goralski, M.; Gaskill, N.; Capota, E.; Kim, J.; Ting, T. C.; Xie, Y.; Williams, N. S.; Nijhawan, D. Anticancer Sulfonamides Target Splicing by İnducing RBM39 Degradation via Recruitment to DCAF15. Science 2017, 356, eaal3755. DOI: 10.1126/science.aal3755.
  • Sun, W.; Hu, X.; Xiang, Y.; Ye, N. Adsorption Behavior and Mechanism of Sulfonamides on Controllably Synthesized Covalent Organic Frameworks. Environ. Sci. Pollut. Res. 2022, 29, 18680–18688. DOI: 10.1007/s11356-021-17169-z.
  • Ovung, A.; Bhattacharyya, J. Sulfonamide Drugs: Structure, Antibacterial Property, Toxicity, and Biophysical İnteractions. Biophys. Rev. 2021, 13, 259–272. DOI: 10.1007/s12551-021-00795-9.
  • DeBergh, J. R.; Niljianskul, N.; Buchwald, S. L. Synthesis of Aryl Sulfonamides via Palladium-Catalyzed Chlorosulfonylation of Arylboronic Acids. J. Am. Chem. Soc. 2013, 135, 10638–10641. DOI: 10.1021/ja405949a.
  • Scozzafava, A.; Supuran, C. T. Carbonic Anhydrase Inhibitors. Arylsulfonylureido-and Arylureido-Substituted Aromatic and Heterocyclic Sulfonamides: Towards Selective Inhibitors of Carbonic Anhydrase Isozyme I. J. Enzyme Inhib. Med. Chem. 1999, 14, 343–363. DOI: 10.3109/14756369909030328.
  • Arslan, O. Inhibition of Bovine Carbonic Anhydrase by New Sulfonamide Compounds. Biochemistry. (Mosc) 2001, 66, 982–983. DOI: 10.1023/A:1012365424900.
  • Angeli, A.; Paoletti, N.; Supuran, C. T. Five-Membered Heterocyclic Sulfonamides as Carbonic Anhydrase Inhibitors. Molecules 2023, 28, 3220. DOI: 10.3390/molecules28073220.
  • Yamali, C.; Gul, H. I.; Cakir, T.; Demir, Y.; Gulcin, I. Aminoalkylated Phenolic Chalcones: Investigation of Biological Effects on Acetylcholinesterase and Carbonic Anhydrase I and II as Potential Lead Enzyme Inhibitors. LDDD. 2020, 17, 1283–1292. DOI: 10.2174/1570180817999200520123510.
  • Site Map 3.5 User Manual. https://gohom.win/ManualHom/Schrodinger/Schrodinger_20152_docs/sitemap/sitemap_user_manual.pdf. (accessed 8 August, 2023).
  • Göçer, H.; Akincioğlu, A.; Göksu, S.; Gülçin, İ.; Supuran, C. T. Carbonic Anhydrase and Acetylcholinesterase İnhibitory Effects of Carbamates and Sulfamoylcarbamates. J. Enzyme Inhib. Med. Chem. 2015, 30, 316–320. DOI: 10.3109/14756366.2014.928704.
  • Sherman, W.; Day, T.; Jacobson, M. P.; Friesner, R. A.; Farid, R. Novel Procedure for Modeling Ligand/Receptor Induced Fit Effects. J. Med. Chem. 2006, 49, 534–553. DOI: 10.1021/jm050540c.
  • Sotriffer, C. A. Accounting for Induced-Fit Effects in Docking: What is Possible and What is Not? Curr. Top. Med. Chem. 2011, 11, 179–191. DOI: 10.2174/156802611794863544.
  • Structure of human acetylcholinesterase in complex with dihydrotanshinone I. https://www.rcsb.org/structure/4m0e. (accessed 8 August, 2023).
  • Cheung, J.; Gary, E. N.; Shiomi, K.; Rosenberry, T. L. Structures of Human Acetylcholinesterase Bound to Dihydrotanshinone I and Territrem B Show Peripheral Site Flexibility. ACS Med. Chem. Lett. 2013, 4, 1091–1096. DOI: 10.1021/ml400304w.
  • Human butyrylcholinesterase in complex with N-((1-(2,3-dihydro-1H-inden-2-yl)piperidin-3-yl)methyl)-N-(2-methoxyethyl)-2-naphthamide. https://www.rcsb.org/structure/4tpk. (accessed Aug. 8, 2023).
  • Crystal structure of human carbonic anhydrase isozyme I with 2,3,5,6-Tetrafluoro-4-(propylthio)benzenesulfonamide. https://www.rcsb.org/structure/4wr7. (accessed Aug. 8, 2023).
  • Three-dimensional structure of human carbonic anhydrase II in complex with 2-(But-2-yn-1-ylsulfamoyl)-4-sulfamoylbenzoicacid. https://www.rcsb.org/structure/5aml. (accessed Aug. 8, 2023).
  • Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev 1997, 23, 3–25. DOI: 10.1016/j.addr.2012.09.019.
  • Xing, L.; Wang, X.; Cheng, C.; Zhu, R.; Liu, B.; Hu, Y. A Solvent-Controlled Highly Efficient Pd–C Catalyzed Hydrogenolysis of Benzaldehydes to Methylbenzenes via a Novel ‘Acetal Pathway’. Tetrahedron 2007, 63, 9382–9386. DOI: 10.1016/j.tet.2007.06.105.
  • Gülçin, İ.; Scozzafava, A.; Supuran, C. T.; Akıncıoğlu, H.; Koksal, Z.; Turkan, F.; Alwasel, S. The Effect of Caffeic Acid Phenethyl Ester (CAPE) on Metabolic Enzymes İncluding Acetylcholinesterase, Butyrylcholinesterase, Glutathione S-Transferase, Lactoperoxidase, and Carbonic Anhydrase İsoenzymes I, II, IX, and XII. J. Enzyme Inhib. Med. Chem. 2016, 31, 1095–1101. DOI: 10.3109/14756366.2015.1094470.
  • Ellman, G. L.; Courtney, K. D.; Andres, V.; Feather-Stone, R. M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem. Pharmacol. 1961, 7, 88–95. DOI: 10.1016/0006-2952(61)90145-9.
  • Verpoorte, J. A.; Mehta, S.; Edsall, J. T. Esterase Activities of Human Carbonic Anhydrases B and C. J. Biol. Chem. 1967, 242, 4221–4229. DOI: 10.1016/S0021-9258(18)95800-X.
  • Akıncıoğlu, A.; Göksu, S.; Naderi, A.; Akıncıoğlu, H.; Kılınç, N.; Gülçin, İ. Cholinesterases, Carbonic Anhydrase İnhibitory Properties and in Silico Studies of Novel Substituted Benzylamines Derived from Dihydrochalcones. Comput. Biol. Chem. 2021, 94, 107565. DOI: 10.1016/j.compbiolchem.2021.107565.
  • Orhan, F.; Akincioglu, H. Determination of Carbonic Anhydrase Enzyme Activity in Halophilic/Halotolerant Bacteria. Appl. Soil Ecol. 2020, 155, 103650. DOI: 10.1016/j.apsoil.2020.103650.
  • Schrödinger Release 2022-4. Maestro; Schrödinger, LLC, New York, 2022.
  • Schrödinger Release 2022-4. Maestro; Protein Preparation, Wizard Schrödinger, LLC, New York, 2022.
  • Schrödinger Release 2022-4. Maestro; SiteMap, Schrödinger, LLC, New York, 2022.
  • Halgren, T. New Method for Fast and Accurate Binding-Site Identification and Analysis. Chem. Biol. Drug Des. 2007, 69, 146–148. DOI: 10.1111/j.1747-0285.2007.00483.x.
  • Schrödinger Release 2022-4. Maestro; LigPrep, Schrödinger, LLC, New York, 2022.
  • Schrödinger Release 2022-4. Maestro; Induced Fit Docking protocol, Glide, Prime, Schrödinger, LLC, New York, 2022.
  • Schrödinger Release 2022-4. Maestro; QikProp, Schrödinger, LLC, New York, 2022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.