502
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Determination of Anisotropic Yield Coefficients by a Data-Driven Multiobjective Evolutionary and Genetic Algorithm

, , , &
Pages 403-413 | Received 14 May 2014, Accepted 25 Jun 2014, Published online: 13 Feb 2015

REFERENCES

  • Banabic, D.; Barlat, F.; Cazacu, O.; Kuwabara, T. Advances in anisotropy and formability. International Journal of Material Forming 2010, 3 (3), 165–189.
  • Hariharan, K.; Prakash, R.V. Integrating effect of forming in fatigue life prediction: review of present scenario and challenges. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 2012, 226 (6), 967–979.
  • Hill, R. A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 1948, 193 (1033), 281–297.
  • Banabic, D. Sheet metal forming processes. Sheet Metal Forming Processes. 2010: Springer Berlin Heidelberg.
  • Nguyen, N.-T.; Lee, M.-G.; Kim, J.H.; Kim, H.Y. A practical constitutive model for AZ31B Mg alloy sheets with unusual stress–strain response. Finite Elements in Analysis and Design, 2013, 76 (0), 39–49.
  • Lee, J.; Lee, J.-Y.; Barlat, F.; Wagoner, R.H.; Chung, K.; Lee, M.-G. Extension of quasi-plastic–elastic approach to incorporate complex plastic flow behavior – application to springback of advanced high-strength steels. International Journal of Plasticity 2013, 45 (0), 140–159.
  • Yoon, J.W.; Barlat, F.; Dick, R.E.; Karabin, M.E. Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function. International Journal of Plasticity 2006, 22 (1), 174–193.
  • Cazacu, O.; Plunkett, B.; Barlat, F. Orthotropic yield criterion for hexagonal closed packed metals. International Journal of Plasticity 2006, 22 (7), 1171–1194.
  • Barlat, F.; Brem, J.C.; Yoon, J.W.; Chung, K.; Dick, R.E.; Lege, D.J.; Pourboghrat, F.; Choi, S.H.; Chu, E. Plane stress yield function for aluminum alloy sheets—part 1: theory. International Journal of Plasticity 2003, 19 (9), 1297–1319.
  • Aretz, H.; Barlat, F. New convex yield functions for orthotropic metal plasticity. International Journal of Non-Linear Mechanics 2013, 51 (0), 97–111.
  • Hariharan, K.; Prakash, R.V.; Sathya Prasad, M. Influence of yield criteria in the prediction of strain distribution and residual stress distribution in sheet metal formability analysis for a commercial steel. Materials and Manufacturing Processes 2010, 25 (8), 828–836.
  • Liu, Y.Q.; Wang, J.C.; Hu, P. The numerical analysis of anisotropic sheet metals in deep-drawing processes. Journal of Materials Processing Technology 2002, 120 (1–3), 45–52.
  • Banabic, D.; Sester, M. Influence of material models on the accuracy of the sheet forming simulation. Materials and Manufacturing Processes 2011, 27 (3), 273–277.
  • Banabic, D.; Aretz, H.; Comsa, D.S.; Paraianu, L. An improved analytical description of orthotropy in metallic sheets. International Journal of Plasticity 2005, 21 (3), 493–512.
  • Mattiasson, K.; Sigvant, M. An evaluation of some recent yield criteria for industrial simulations of sheet forming processes. International Journal of Mechanical Sciences 2008, 50 (4), 774–787.
  • Paszkowicz, W. Genetic algorithms, a nature-inspired tool: a survey of applications in materials science and related fields: part II. Materials and Manufacturing Processes 2013, 28 (7), 708–725.
  • Datta, S.; Chattopadhyay, P.P. Soft computing techniques in advancement of structural metals. International Materials Reviews 2013, 58 (8), 475–504.
  • Chakraborti, N. Critical assessment: The unique contributions of multi-objective evolutionary and genetic algorithms in materials research. Materials Science and Technology. doi:10.1179/1743284714Y.0000000578.
  • Chaparro, B.M.; Thuillier, S.; Menezes, L.F.; Manach, P.Y.; Fernandes, J.V. Material parameters identification: Gradient-based, genetic and hybrid optimization algorithms. Computational Materials Science 2008, 44 (2), 339–346.
  • Jackiewicz, J. Assessing coefficients of the barlat yield criterion for anisotropic aluminum alloy sheets by means of the evolutionary strategy. Materials and Manufacturing Processes 2009, 24 (3), 375–383.
  • Hariharan, K.; Chakraborti, N.; Barlat, F.; Lee, M.-G. A novel multi-objective genetic algorithms-based calculation of Hill's coefficients. Metallurgical and Materials Transactions A 2014, 45 (6), 2704–2707.
  • Barlat, F.; Lian, K. Plastic behavior and stretchability of sheet metals. Part I: A yield function for orthotropic sheets under plane stress conditions. International Journal of Plasticity 1989, 5 (1), 51–66.
  • Kuwabara, T.; Ikeda, S.; Kuroda, K. Measurement and analysis of differential work hardening in cold-rolled steel sheet under biaxial tension. Journal of Materials Processing Technology 1998, 80–81 (0), 517–523.
  • Kuwabara, T.; Kuroda, M.; Tvergaard, V.; Nomura, K. Use of abrupt strain path change for determining subsequent yield surface: experimental study with metal sheets. Acta Materialia 2000, 48 (9), 2071–2079.
  • Stoughton, T.B.; Shi, M.F.; Huang, G.; Yoon, J.W. Material characterizations for Benchmark 1 and Benchmark 2. AIP Conference Proceedings 2013, 1567 (1), 9–14.
  • Miettinen, K. Nonlinear Multiobjective Optimization; Kluwer Academic Publishers: Norwell, MA, 1998.
  • Chakraborti, N. Chapter 5 - Evolutionary data-driven modeling. In: Rajan, K. eds.; Informatics for Materials Science and Engineering, Butterworth-Heinemann: Oxford, 2013; pp. 71–95.
  • Pettersson, F.; Chakraborti, N.; Saxén, H. A genetic algorithms based multi-objective neural net applied to noisy blast furnace data. Applied Soft Computing 2007, 7 (1), 387–397.
  • Li, X. A Real-Coded Predator-Prey Genetic Algorithm for Multiobjective Optimization, in Evolutionary Multi-Criterion Optimization; C. Fonseca, et al., Eds.; Springer: Berlin Heidelberg, 2003; pp. 207–221.
  • Chowdhury, S.; Dulikravich, G. Improvements to single-objective constrained predator–prey evolutionary optimization algorithm. Structural and Multidisciplinary Optimization 2010, 41 (4), 541–554.
  • Deb, K. Multi-Objective Optimization using Evolutionary Algorithms; John Wiley & Sons: Sussex, 2001.
  • Mattiasson, K.; Sigvant, M. On the influence of the yield locus shape in the simulation of sheet stretch forming. AIP Conference Proceedings 2005, 778 (1), 395–400.
  • Hariharan, K.; Prakash, R.; Sathya Prasad, M.; Madhusudhan Reddy, G. Evaluation of yield criteria for forming simulations based on residual stress measurement. International Journal of Material Forming 2010, 3 (4), 291–297.
  • Wang, L.; Lee, T.C. The effect of yield criteria on the forming limit curve prediction and the deep drawing process simulation. International Journal of Machine Tools and Manufacture 2006, 46 (9), 988–995.
  • Hariharan, K.; Balaji, C. Material optimization: a case study using sheet metal-forming analysis. Journal of Materials Processing Technology 2009, 209 (1), 324–331.
  • Dodd, B.; Caddell, R.M. On the anomalous behaviour of anisotropic sheet metals. International Journal of Mechanical Sciences 1984, 26 (2), 113–118.
  • Logan, R.W.; Hosford, W.F. Upper-bound anisotropic yield locus calculations assuming ⟨111⟩-pencil glide. International Journal of Mechanical Sciences 1980, 22 (7), 419–430.
  • Barlat, F.; Aretz, H.; Yoon, J.W.; Karabin, M.E.; Brem, J.C.; Dick, R.E. Linear transfomation-based anisotropic yield functions. International Journal of Plasticity 2005, 21 (5), 1009–1039.
  • Comsa, D.-S.; Banabic, D. Plane-stress yield criterion for highly-anisotropic sheet metals. In Proceedings of the 7th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes, NUMISHEET, ETH Zurich, Switzerland, September 1–5, 2008.
  • Flores, P.; Tuninetti, V.; Gilles, G.; Gonry, P.; Duchêne, L.; Habraken, A.M. Accurate stress computation in plane strain tensile tests for sheet metal using experimental data. Journal of Materials Processing Technology 2010, 210 (13), 1772–1779.
  • Yin, Q.; Zillmann, B.; Suttner, S.; Gerstein, G.; Biasutti, M.; Tekkaya, A.E.; Wagner, M.F.X.; Merklein, M.; Schaper, M.; Halle, T.; Brosius, A. An experimental and numerical investigation of different shear test configurations for sheet metal characterization. International Journal of Solids and Structures 2014, 51 (5), 1066–1074.
  • Giri, B.K.; Hakanen, J.; Miettinen, K.; Chakraborti, N. Genetic programming through bi-objective genetic algorithms with a study of a simulated moving bed process involving multiple objectives. Applied Soft Computing 2013, 13 (5), 2613–2623.
  • Mondal, D.N.; Sarangi, K.; Pettersson, F.; Sen, P.K.; Saxén, H.; Chakraborti, N. Cu―Zn separation by supported liquid membrane analyzed through multi-objective genetic algorithms. Hydrometallurgy 2011, 107 (3–4), 112–123.
  • Agarwal, A.; Pettersson, F.; Singh, A.; Kong, C.S.; Saxén, H.; Rajan, K.; Iwata, S.; Chakraborti, N. Identification and optimization of AB2 phases using principal component analysis, evolutionary neural nets, and multiobjective genetic algorithms. Materials and Manufacturing Processes 2009, 24 (3), 274–281.
  • Agarwal, A.; Tewary, U.; Pettersson, F.; Das, S.; Saxén, H.; Chakraborti, N. Analysing blast furnace data using evolutionary neural network and multiobjective genetic algorithms. Ironmaking & Steelmaking 2010, 37 (5), 353–359.
  • Datta, S.; Pettersson, F.; Ganguly, S.; Saxen, H.; Chakraborti, N. Designing high strength multi-phase steel for improved strength-ductility balance using neural networks and multi-objective genetic algorithms. ISIJ International 2007, 47 (8), 1195–1203.
  • Datta, S.; Pettersson, F.; Ganguly, S.; Saxén, H.; Chakraborti, N. Identification of factors governing mechanical properties of TRIP-aided steel using genetic algorithms and neural networks. Materials and Manufacturing Processes 2008, 23 (2), 130–137.
  • Govindan, D.; Chakraborty, S.; Chakraborti, N. Analyzing the fluid flow in continuous casting through evolutionary neural nets and multi-objective genetic algorithms. Steel Research International 2010, 81 (3), 197–203.
  • Hariharan, K.; Nguyen, N.-T.; Chakraborti, N.; Lee, M.G.; Barlat, F. Multi-objective genetic algorithm to optimize variable drawbead geometry for tailor welded blanks made of dissimilar steels. Steel Research International 2014, doi:10.1002/srin.201300471.
  • Pettersson, F.; Biswas, A.; Sen, P.K.; Saxén, H.; Chakraborti, N. Analyzing leaching data for low-grade manganese ore using neural nets and multiobjective genetic algorithms. Materials and Manufacturing Processes 2009, 24 (3), 320–330.
  • Jha, R.; Sen, P.K.; Chakraborti, N. Multi-objective genetic algorithms and genetic programming models for minimizing input carbon rates in a blast furnace compared with a conventional analytic approach. Steel Research International 2014, 85 (2), 219–232.
  • Coello, C.A.C.; Lamont, G.B.; Van Veldhuisen, D.A. Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd Ed., Springer: New York, 2007.
  • Chakraborti, N. Genetic algorithms in materials design and processing. International Materials Reviews 2004, 49 (3–1), 246–260.
  • Wu, P.D.; Jain, M.; Savoie, J.; MacEwen, S.R.; Tuğcu, P.; Neale, K.W. Evaluation of anisotropic yield functions for aluminum sheets. International Journal of Plasticity 2003, 19 (1), 121–138.
  • Lademo, O.G.; Hopperstad, O.S.; Langseth, M. An evaluation of yield criteria and flow rules for aluminium alloys. International Journal of Plasticity 1999, 15 (2), 191–208.
  • Lee, J.-W.; Lee, M.-G.; Barlat, F. Finite element modeling using homogeneous anisotropic hardening and application to spring-back prediction. International Journal of Plasticity 2012, 29, 13–41.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.