929
Views
56
CrossRef citations to date
0
Altmetric
Original Articles

Dissimilar Friction Stir Welding Between 5083 and 6082 Al Alloys Reinforced With TiC Nanoparticles

, , , , &
Pages 2101-2114 | Received 17 May 2015, Accepted 18 Sep 2015, Published online: 25 Jul 2016

REFERENCES

  • Dawes, C.J.; Thomas, W.M. Friction stir process welds aluminum alloys. Welding Journal 1996, 75 (3), 41–45.
  • Peel, M.J.; Steuwer, A.; Withers, P.J.; Dickerson, T.; Shi, Q.; Shercliff, H. Dissimilar friction stir welds in AA5083-AA6082. Part I: process parameter effects on thermal history and weld properties. Metallurgical and Materials Transactions A 2006, 37 (7), 2183–2193.
  • Peel, M.J.; Steuwer, A.; Withers, P.J. Dissimilar friction stir welds in AA5083-AA6082. Part II: process parameter effects on microstructure. Metallurgical and Materials Transactions A 2006, 37 (7), 2195–2206.
  • Steuwer, A.; Peel, M.J.; Withers, P.J. Dissimilar friction stir welds in AA5083–AA6082: the effect of process parameters on residual stress. Materials Science and Engineering: A 2006, 441 (1), 187–196.
  • Leitão, C.; Louro, R.; Rodrigues, D.M. Analysis of high temperature plastic behaviour and its relation with weldability in friction stir welding for aluminium alloys AA5083-H111 and AA6082-T6. Materials and Design 2012, 37, 402–409.
  • Hashim, J.; Looney, L.; Hashmi, M.S.J. Metal matrix composites: production by the stir casting method. Journal of Materials Processing Technology 1999, 92–93, 1–7.
  • Sukumaran, K.; Ravikumar, K.K.; Pillai, S.G.K.; Rajan, T.P.D.; Ravi, M.; Pillai, R.M.; Pai, B.C. Studies on squeeze casting of Al 2124 alloy and 2124–10% SiCp metal matrix composite. Materials Science and Engineering A 2008, 490, 235–241.
  • Scudino, S.; Liu, G.; Prashanth, K.G.; Bartusch, B.; Surreddi, K.B.; Murty, B.S.; Eckert, J. Mechanical properties of Al-based metal matrix composites reinforced with Zr-based glassy particles produced by powder metallurgy. Acta Materialia 2009, 57, 2029–2039.
  • Pantelis, D.; Tissandier, A.; Manolatos, P.; Ponthiaux, P.; Formation of wear resistant Al-SiC surface composite by laser melt-particle injection process. Materials Science and Technology 1995, 11, 299–303.
  • Lee, I.S.; Hsu, C.J.; Chen, C.F.; Ho, N.J.; Kao, P.W. Particle-reinforced aluminum matrix composites produced from powder mixtures via friction stir processing. Composites Science and Technology 2011, 71 (5), 693–698.
  • Wang, W.; Shi, Q.Y.; Liu, P.; Li, H.K.; Li, T. A novel way to produce bulk SiCp reinforced aluminum metal matrix composites by friction stir processing. Journal of materials processing technology 2009, 209 (4), 2099–2103.
  • Shafiei-Zarghani, A.; Kashani-Bozorg, S.F.; Zarei-Hanzaki, A. Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing. Materials Science and Engineering: A 2009, 500 (1–2), 84–91.
  • Sathiskumar, R.; Murugan, N.; Dinaharan, I.; Vijay, S.J. Characterization of boron carbide particulate reinforced in situ copper surface composites synthesized using friction stir processing. Materials Characterization 2013, 84, 16–27.
  • Mostafapour Asl, A.; Khandani, S.T. Role of hybrid ratio in microstructural, mechanical and sliding wear properties of the Al5083/Graphitep/Al2O3p a surface hybrid nanocomposite fabricated via friction stir processing method. Materials Science and Engineering: A 2013, 559, 549–557.
  • Devaraju, A.; Kumar, A.; Kumaraswamy, A.; Kotiveerachari, B. Wear and mechanical properties of 6061-T6 aluminum alloy surface hybrid composites [(SiC + Gr) and (SiC + Al2O3)] fabricated by friction stir processing. Journal of Materials Research and Technology 2013, 2 (4), 362–369.
  • Khorrami, M.S.; Samadi, S.; Janghorban, Z.; Movahedi, M. In-situ aluminum matrix composite produced by friction stir processing using FE particles. Materials Science and Engineering: A 2015, 641, 380–390.
  • Golmohammadi, M.; Atapour, M.; Ashrafi, A. Fabrication and wear characterization of an A413/Ni surface metal matrix composite fabricated via friction stir processing. Materials and Design 2015, 85, 471–482.
  • Panaskar, N.J.; Sharma, A. Surface modification and nanocomposite layering of Fastener-Hole through friction-stir processing. Materials and Manufacturing Processes 2014, 29 (6), 726–732.
  • Bahrami, M.; Nikoo, M.F.; Givi, M.K.B. Microstructural and mechanical behaviors of nano-SiC-reinforced AA7075-O FSW joints prepared through two passes. Materials Science and Engineering: A 2015, 626, 220–228.
  • Sahraeinejad, S.; Izadi, H.; Haghshenas, M.; Gerlich, A.P. Fabrication of metal matrix composites by friction stir processing with different particles and processing parameters. Materials Science and Engineering: A 2015, 626, 505–513.
  • Arab, S.M.; Karimi, S.; Jahromi, S.A.J.; Javadpour, S.; Zebarjad, S.M. Fabrication of novel fiber reinforced aluminum composites by friction stir processing. Materials Science and Engineering: A 2015, 632, 50–57.
  • Khodabakhshi, F.; Simchi, A.; Kokabi, A.H.; Švec, P.; Simančík, F.; Gerlich, A.P. Effects of nanometric inclusions on the microstructural characteristics and strengthening of a friction-stir processed aluminum–magnesium alloy. Materials Science and Engineering: A 2015, 642, 215–229.
  • Ashjari, M.; Asl, A.M.; Rouhi, S. Experimental investigation on the effect of process environment on the mechanical properties of AA5083/Al2O3 nanocomposite fabricated via friction stir processing. Materials Science and Engineering: A 2015, 645, 40–46.
  • Kumar, C.S.; Yadav, D.; Bauri, R.; Ram, G.J. Effects of ball milling and particle size on microstructure and properties 5083 Al-Ni composites fabricated by friction stir processing. Materials Science and Engineering: A 2015, 645, 205–212.
  • Yuvaraj, N.; Aravindan, S. Fabrication of Al5083/B 4 C surface composite by friction stir processing and its tribological characterization. Journal of Materials Research and Technology 2015.
  • Li, B.; Shen, Y.; Hu, W. Friction-stir nitriding of titanium alloy surface layer. Materials and Manufacturing Processes 2014, 29 (4), 493–497.
  • Leitão, C.; Costa, M.I.; Khanijomdi, K.; Rodrigues, D.M. Assessing strength and local plastic behaviour of welds by shear testing. Materials and Design 2013, 51, 968–974.
  • Charitidis, C.A.; Dragatogiannis, D.A.; Koumoulos, E.P.; Kartsonakis, I.A. Residual stress and deformation mechanism of friction stir welded aluminum alloys by nanoindentation. Materials Science and Engineering: A 2012, 540, 226–234.
  • Oliver, W.; Pharr, G. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Reseasrch 1992, 7 (06), 1564–1583.
  • Koumoulos, E.P.; Charitidis, C.A.; Daniolos, N.M.; Pantelis, D.I. Nanomechanical properties of friction stir welded AA6082-T6 aluminum alloy. Materials Science and Engineering: B 2011, 176 (19), 1585–1589.
  • Charitidis, C.A.; Dragatogiannis, D.A. Finite element analysis, stress-strain distribution and size effects rise during nanoindentation of welded aluminum alloy. International Journal of Structural Integrity 2013, 4 (1), 78–90.
  • Pantelis, D.I.; Karakizis, P.N.; Daniolos, N.M.; Charitidis, C.A.; Koumoulos E.P.; Dragatogiannis D.A. Microstructural study and mechanical properties of dissimilar friction stir welded AA5083-H111 and AA6082-T6 reinforced with SiC nanoparticles. Materials and Manufacturing Processes 2015.
  • Sathiskumar, R.; Murugan, N.; Dinaharan, I.; Vijay, S.J. Characterization of boron carbide particulate reinforced in situ copper surface composites synthesized using friction stir processing. Materials Characterization 2013, 84, 16–27.
  • Avettand-Fènoël, M.N.; Simar, A.; Shabadi, R.; Taillard, R.; de Meester, B. Characterization of oxide dispersion strengthened copper based materials developed by friction stir processing. Materials and Design 2014, 60, 343–357.
  • Feng, G.; Ngan, A.H.W. Effects of creep and thermal drift on modulus measurement using depth-sensing indentation. Journal of Materials Research 2002, 17 (03), 660–668.
  • Ji, S.D.; Shi, Q.Y.; Zhang, L.G.; Zou, A.L.; Gao, S.S.; Zan, L.V. Numerical simulation of material flow behavior of friction stir welding influenced by rotational tool geometry. Computational Materials Science 2012, 63, 218–226.
  • McNelley, T.R.; Swaminathan, S.; Su, J.Q. Recrystallization mechanisms during friction stir welding/processing of aluminum alloys. Scripta Materialia 2008, 58 (5), 349–354.
  • Humphreys, F.J.; Hatherly, M. Recrystallization and Related Annealing Phenomena; Elsevier: Oxford, UK; 2004; 574 pp.
  • Guo, J.F.; Liu, J.; Sun, C.N.; Maleksaeedi, S.; Bi, G.; Tan, M.J.; Wei, J. Effects of nano-Al2O3 particle addition on grain structure evolution and mechanical behaviour of friction-stir-processed Al. Materials Science and Engineering: A 2014, 602, 143–149.
  • Choi, D-.H.; Kim, Y.-I.; Kim, D.-U.; Jung, S.-B. Effect of SiC particles on microstructure and mechanical property of friction stir processed AA6061-T4. Transactions of Nonferrous Metals Society of China 2012, 22, 614–618.
  • Arbegast, W.J. Modeling friction stir joining as a metal working process. In Hot Deformation of Aluminum Alloys; The Minerals, Metals and Materials Society Annual Meeting, San Diego, CA, 2–6 March, 2003, pp. 313–327.
  • Moreira, P.M.G.P.; Santos, T.; Tavares, S.M.O.; Richter-Trummer, V.; Vilaça, P.; de Castro, P.M.S.T. Mechanical and metallurgical characterization of friction stir welding joints of AA6061-T6 with AA6082-T6. Materials and Design 2009, 30 (1), 180–187.
  • Bahrami, M.; Dehghani, K.; Kazem Besharati Givi M. A novel approach to develop aluminum matrix nano-composite employing friction stir welding technique. Materials and Design 2014, 53, 217–225.
  • Fischer-Cripps, A.C. A simple phenomenological approach to nanoindentation creep. Materials Science and Engineering: A 2004, 385 (1), 74–82.
  • Hill, R.; Storakers, B.; Zdunek, A.B. A theoretical study of the Brinell hardness test. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 1989, 423, 301–330.
  • Biwa, S.; Storåkers, B. An analysis of fully plastic Brinell indentation. Journal of the Mechanics and Physics of Solids 1995, 43 (8), 1303–1333.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.