159
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis of Mixed-Phase TiO2 Powders in Salt Matrix and Their Photocatalytic Activity

&
Pages 1628-1633 | Received 14 Jun 2015, Accepted 25 Oct 2015, Published online: 09 May 2016

REFERENCES

  • Hurum, C.D.; Agrios, G.A.; Gray, A.K.; Rajh, T.; Thurnauer, C.M. Explaining the enhanced photocatalytic activity of degussa P25 mixed-phase TiO2 using EPR. Journal of Physical Chemistry B 2003, 107, 4545–4549.
  • Yu, W.; Liu, X.; Pan, L.; Li, J.; Liu, J.; Zhang, J.; Li, P.; Chen, C.; Sun.Z. Enhanced visible light photocatalytic degradation of methylene blue by F-doped TiO2. Applied Surface Science 2014, 319, 107–112.
  • Yang, H.; Li, X.; Wang, A.; Wang, Y.; Chen, Y.. Photocatalytic degradation of methylene blue by MoO3 modified TiO2 under visible light. Chinese Journal of Catalysis 2014, 35, 140–147.
  • Anandan, S.; Sivasankar, T.; Villarreal, L.T. Synthesis of TiO2/WO3 nanoparticles via sonochemical approach for the photocatalytic degradation of methylene blue under visible light illumination. Ultrasonics Sonochemistry 2014, 21, 1964–1968.
  • Naraginti, S.; Stephen, B.F.; Radhakrishnan, A.; Sivakumar, A. Zirconium and silver co-doped TiO2 nanoparticles as visible light catalyst for reduction of 4-nitrophenol, degradation of methyl orange and methylene blue. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2015, 135, 814–819.
  • Vallejo, W.; Diaz-Uribe, C.; Cantillo, A. Methylene blue photocatalytic degradation under visible irradiation on TiO2 thin films sensitized with Cu and Zn tetra carboxy-phthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry 2014, 11, 009.
  • Luan, X.; Wang, Y. Preparation and photocatalytic activity of Ag/bamboo-type TiO2 nanotube composite electrodes for methylene blue degradation. Materials Science in Semiconductor Processing 2014, 25, 43–51.
  • Tang, C.; Liu, E.; Fan, J.; Hu, X.; Kang, L.; Wan, J. Heterostructured Ag3PO4/TiO2 nano-sheet film with high efficiency for photodegradation of methylene blue. Ceramics International 2014, 40, 15447–15453.
  • Seftel, M.E.; Niarchos, M.; Mitropoulos, C.; Mertens, M.; Vansant, F.E.; Cool, P. Photocatalytic removal of phenol and methylene-blue in aqueous media using TiO2@LDH clay nanocomposites. Catalysis Today 2014, 252, 120–127.
  • Yu, J.; Lin, F.W.; Leng, H.L.; Bao, K.S.; Zou, P.J.; Luo, B.X.; Chen, Z.D.; Luo, L.S.; Au, T.C. Adsorption–degradation synergetic effects on removal of methylene blue over heterostructured TiO2/Co4S4.23Se3.77 composites. Journal of Molecular Catalysis A: Chemical 2014, 394, 121–128.
  • Xu, J.; Sun, P.; Zhang, X.; Jiang, P.; Cao, W.; Chen, P.; Jin, H. Synthesis of N-dope d TiO2 with different nitrogen concentrations by mild hydrothermal method. Materials and Manufacturing Processes 2014, 29, 1162–1167.
  • Chai, B.; Xu, Q.; Li, J.; Dai, K. Synthesis of floriated BiOI decorated with TiO2 nanoparticles for efficient photocatalytic activity under visible light. Science of Advanced Materials 2014, 6, 1806–1813.
  • Nawi, A.M.; Zain, M.S. Enhancing the surface properties of the immobilized Degussa P-25 TiO2 for the efficient photocatalytic removal of methylene blue from aqueous solution. Applied Surface Science 2012, 258, 6148–6157.
  • Devi, G.L.; ArunaKumari, L.M. Synergistic effect between orthorhombic -Sulfur and TiO2 as co-photocatalysts for efficient degradation of methylene blue: A mechanistic approach. Journal of Molecular Catalysis A: Chemical 2014, 391, 99–104.
  • Lorencon, E.; Brandão, D.F.; Krambrock, K.; Alves, B.C.D.; Silva, C.C.J.; Ferlauto, S.A.; Lago, M.R. Generation of reactive oxygen species in titanates nanotubes induced by hydrogen peroxide and their application in catalytic degradation of methylene blue dye. Journal of Molecular Catalysis A: Chemical 2014, 394, 316–323.
  • Natarajan, S.T.; Bajaj, C.H.; Tayade, J.R. Preferential adsorption behavior of methylene blue dye onto surface hydroxyl group enriched TiO2 nanotube and its photocatalytic regeneration. Journal of Colloid and Interface Science 2014, 433, 104–114.
  • Zhang, L.-Y.; Cai, S.-Y.; Mo, J.-H.; Wei, G.-T.; Li, Z.-M.; Ye, R.-C.; Xie, X.-M. Study on the preparati on of H3PW12O40–TiO2/bentonite composite material. Materials and Manufacturing Processes 2015, 30, 279–284.
  • Long, T.; Xu, L.; Zhang, T.; Wang, Y. Facile synthesis of titania monolith and the investigation of its photocatalytic activity. Materials and Manufacturing Processes 2014, 29, 743–747.
  • Zhang, Q.; Li, F.; Chang, X.; He, D. Comparison of nickel foam/Ag-support ed ZnO, TiO2, and WO3 for toluene photodegradation. Materials and Manufacturing Processes 2014, 29, 789–794.
  • Chen, Z.; Zhao, G.; Li, H.W.; Han, G.; Song, B. Effects of water amount and pH on the Crystal behavior of a TiO2 nanocrystalline derived from a sol–gel process at a low temperature. Journal of American Ceramic Society 2009, 92, 1024–1029.
  • Hou, C.; Zhang, Q.; Li, Y.; Wang, H. P25–graphene hydrogels: Room-temperature synthesis and application for removal of methylene blue from aqueous solution. Journal of Hazardous Materials 2014, 205–206, 229–235.
  • Subakova, I.; Petukhov, I.; Medvedeva, N. Obtaining of Ni–P–TiO2 composite coatings with TiO2 sol and surfactants and their properties. Materials and Manufacturing Processes 2015, 30, 766–770.
  • Myilsamy, M.; Murugesan, V.; Mahalakshmi, M. The effect of synthesis conditions on mesoporous structure and the photocatalytic activity of TiO2 nanoparticles. Journal of Nanoscience and Nanotechnology 2015, 15, 4664–4675.
  • Schug, H.; Isaacson, C.W.; Sigg, L.; Ammann, A.A.; Schirmer, K. Effect of TiO2 nanoparticles and UV radiation on extracellular enzyme activity of intact heterotrophic biofilms. Environmental Science & Technology 2014, 48, 11620–11628.
  • Roy, B.; Ahrenkiel, P.S.; Fuierer, A.P. Controlling the size and morphology of TiO2 powder by molten and solid salt synthesis. Journal of American Ceramic Society 2008, 91, 2455–2463.
  • Roy, B.; Fuierer, A.P. Influence of sodium chloride and dibasic sodium phosphate salt matrices on the anatase–rutile phase transformation and particle sizeof titanium dioxide powder. Journal of American Ceramic Society 2010, 93, 436–444.
  • Bartholomew, H.C.; Farrauto, J.R. Fundamentals of Industrial Catalytic Processes; Wiley-Interscience, John Wiley and Sons, Inc (2).: Hoboken, NJ, 2005.
  • Webb, A.P. Introduction to Chemical Adsorption Analytical Techniques and their Applications to Catalysis; MIC Technical Publications, Micromeritics Instrument Corp: Norcross, Georgia, 2003; 30093 p.
  • AutoChem II 2920 Automated Catalyst Characterization System. Operator's Manual V3.05, Appendix B, 307–315. http://www.micromeritics.com/repository/files/autochem_ii_2920_operator_manual_v4.00.pdf (Accessed September 28, 2015).
  • Znad, H.; Kawase, Y. Synthesis and characterization of S-doped Degussa P-25 with application in decolorization of Orange II dye as a model substrate. Journal of Molecular Catalysis A : Chem 2009, 314, 55–62.
  • Shannon, D.R.; Pask, A.J. Kinetics of anatase-rutile transformation. Journal of American Ceramic Society 1965, 48, 391–398.
  • Zhang, H.; Banfield, J.F. New kinetic model for the nanocrystallineanatase-to-rutile transformation revealing rate dependence on number of particles. American Mineralogist 1999, 84, 528–535.
  • House, J.E. Inorganic Chemistry; Academic Press: Massachusetts, USA, 2008; 221 p.
  • http://www.epa.gov/opptintr/nano/ev32.pdf (Downloaded on June 10, 2015).
  • Ohno, T.; Sarukawa, K.; Tokieda, K.; Matsumura, M. Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases. Journal of Catalysis 2001, 203, 82–86.
  • Datye, K.A.; Riegel, G.; Bolton, R.J.; Huang, M.; Prairie, R.M. Microstructural characterization of a fumed titanium dioxide photocatalyst. Journal of Solid State Chemistry 1995, 115, 236–239.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.