588
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Effects of Powder Activated Carbon Particle Size on Activated Carbon Monolith's Properties

&
Pages 1634-1638 | Received 27 Jul 2015, Accepted 05 Oct 2015, Published online: 11 May 2016

REFERENCES

  • Bhatnagar, A.; Sillanpääb, M.; Witek-Krowiak, A. Agricultural waste peels as versatile biomass for water purification – A review. Chemical Engineering Journal 2015, 270, 244–271.
  • Mofarrah, A.; Husain, T.; Bottaro, C. Characterization of activated carbon obtained from Saudi Arabian fly ash. International Journal of Environmental Science and Technology 2014, 11, 159–168.
  • Slasli, A.M.; Jorge, M.; Stoeckli, F.; Seaton, N.A. Modelling of water adsorption by activated carbons: Effects of microporous structure and oxygen content. Carbon 2004, 42, 1947–1952.
  • Dubey, S.P.; Dwivedib, A.D.; Sillanp, M.; Gopal, K. Artemisia vulgaris-derived mesoporous honeycomb-shaped activated carbon for ibuprofen adsorption. Chemical Engineering Journal 2010, 165, 537–544.
  • Nalwa, H.S. Handbook of Surfaces and Interfaces of Materials; Academic Press: San Diego, CA, 2001; 110 p.
  • Gürses, A.; Doğar, C.; Karaca, S.; Açikyildiz, M.; Bayrak, R. Production of granular activated carbon from waste Rosa canina sp. seeds and its adsorption characteristics for dye. Journal of Hazardous Materials 2006, 131, 254–259.
  • Kim, B.; Kim, Y.; Yamamoto, T. Adsorption characteristics of bamboo activated carbon. Korean Journal of Chemical Engineering 2008, 25, 1140–1144.
  • Saeidi, N.; Lotfollahi, M.N. A procedure for preparation of semi-activated carbon fiber without any treatment under high temperature. International Journal of Engineering Transactions A 2014, 27, 1519–1526.
  • Carvalho, A.P.; Mestre, A.S.; Pires, J.; Pinto, M.L. Granular activated carbons from powdered samples using clays as binders for the adsorption of organic vapours. Microporous and Mesoporous Materials 2006, 93, 226–231.
  • Lim, J.W.; Choi, Y.; Yoon, H.S.; Park, Y.K.; Yim, J.H.; Jeon, J.K. Extrusion of honeycomb monoliths employed with activated carbon-LDPE hybrid materials. Journal of Industrial and Engineering Chemistry 2010, 16, 51–56.
  • Saeidi, N.; Lotfollahi, M.N. A procedure to form powder activated carbon into activated carbon monolith. International Journal of Advanced Manufacturing Technology. doi:10.1007/s00170-015-7311-z.
  • Pinto, M.L.; Pires, J.; Carvalho, A.P.; Manuela, B.; De Carvalho, M.B.; Bordado, J.C. Characterization of adsorbent materials supported on polyurethane foams by nitrogen and toluene adsorption. Microporous and Mesoporous Materials 2005, 80, 253–262.
  • Shi, Z.G.; Feng, Y.Q.; Xu, L.; Da, S.L. Preparation of porous carbon–silica composite monoliths. Carbon 2003, 41, 2668–2670.
  • García-García, A.; Illán-Gómez, M.J.; Linares-Solano, A.; Lecea, C.S.M. Potassium-containing briquetted coal for the reduction of NO. Fuel 1997, 76, 499–505.
  • Lozano-Castelló, D.; Cazorla-Amorós, D.; Linares-Solano, A.; Quinn, D.F.F. Activated carbon monoliths for methane storage: influence of binder. Carbon 2002, 40, 2817–2825.
  • Gatica, J.M.; Harti, S.; Vidal, H. Changing the adsorption capacity of coal-based honeycomb monoliths for pollutant removal from liquid streams by controlling their porosity. Applied Surface Science 2010, 256, 7111–7117.
  • Yates, M.; Blanco, L.; Avila, P.; Martin, M.P. Honeycomb monoliths of activated carbons for effluent gas purification. Microporous and Mesoporous Materials 2000, 37, 201–208.
  • Yates, M.; Blanco, J.; Martin-Luengo, M.A.; Martin, M.P. Vapour adsorption capacity of controlled porosity honeycomb monoliths. Microporous and Mesoporous Materials 2003, 65, 219–231.
  • Rodríguez-Reinoso, F.; Molina-Sabio, M.; González, J.C. Preparation of activated carbon–sepiolite pellets. Carbon 2001, 39, 776–779.
  • Molina-Sabio, M.; González, J.C.; Rodríguez-Reinoso, F. Adsorption of NH3 and H2S on activated carbon and activated carbon–sepiolite pellets. Carbon 2004, 42, 448–450.
  • Kapteijn, F.; Heiszwolf, J.J.; Nijhuis, T.V.; Moulijn, J.A. Monoliths in multiphase catalytic processes: Aspects and prospects. Cattech 1999, 3, 24–41.
  • Yin, Y.C.; Aroua, M.K.; Daud, W.M.A. Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions. Separation and Purification Technology 2007, 52, 403–415.
  • Yang, J.; Qiu, K. Experimental design to optimize the preparation of activated carbons from herb residues by vacuum and traditional ZnCl2 chemical activation. Industrial and Engineering Chemistry Research 2011, 50, 4057–4064.
  • Ahmedna, W.E.M.; Rao, R.M. Surface Properties of granular activated carbons from agricultural byproducts and their effects on raw sugar decolorization. Bioresource Technology 2000, 71, 103–112.
  • Aygün, A.; Yenisoy-Karakaş, S.; Duman, I. Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Microporous and Mesoporous Materials 2003, 66, 189–195.
  • Swiaztkowski, A.; Goworek, J. Studies on the adsorption equilibrium in the system benzene-methanol/deoxidized active carbon. Carbon 1987, 25, 333–336.
  • Buczek, B.; Swiaztkowski, A.; Goworek, J. Adsorption from binary liquid mixtures on commercial activated carbons. Carbon 1995, 33, 129–134.
  • Marczewska, D.; Goworek, A.J.; Swiaztkowski, A.; Buczek, B. Influence of differences in porous structure within granules of activated carbon on adsorption of aromatics from aqueous solutions. Carbon 2004, 42, 301–306.
  • Newman, A.C.D. Chemistry of Clays and Clay Minerals; Longman Scientific & Technical: London, England, 1987; 20 p.
  • Saeidi, N.; Lotfollahi, M.N. Effects of powder activated carbon particle size on adsorption capacity and mechanical properties of the semi activated carbon fiber. Fibers and Polymers 2015, 16, 543–549.
  • Junior, P.O.; Cazetta, A.L.; Gomes, R.C.; Barizao, E.O.; Souza, I.P.A.F.; Martins, A.C.; Asefa, T.; Almeida, V.C. Synthesis of ZnCl2-activated carbon from macadamia nut endocarp (Macadamia integrifolia) by microwave-assisted pyrolysis: Optimization using RSM and methylene blue adsorption. Journal of Analytical and Applied Pyrolysis 2014, 105, 166–176.
  • Lee, T.S.; Cho, J.H.; Chi, S.H. Carbon dioxide removal using carbon monolith as electric swing adsorption to improve indoor air quality. Building and Environment 2015, 92, 209–221.
  • Shih, Y.H.; Lirio, S.; Li, C.K.; Liu, W.L.; Huang, H.Y. Determination of imidazole derivatives by micellar electrokinetic chromatography combined with solid-phase microextraction using activated carbon-polymer monolith as adsorbent. Journal of Chromatography A 2015. doi:10.1016/j.chroma.2015.08.067.
  • Fiuza, J.A.R.; Neto, R.M.D.J.; Correia, L.B.; Andrade, H.M.C. Preparation of granular activated carbons from yellow mombin fruit stones for CO2 adsorption. Journal of Environmental Management 2015, 161, 198–205.
  • Roberts, A.D.; Li, X.; Zhang, H. Hierarchically porous sulfur-containing activated carbon monoliths via ice-templating and one-step pyrolysis. Carbon 2015, 95, 268–278.
  • Wang, L.; Zhang, Y.; Lou, Y.; Guo, Y.; Lu, G.Y. Pd catalyst supported on activated carbon honeycomb monolith for CO oxidation and the application in air purification of vehicular tunnel. Fuel Processing Technology 2014, 122, 23–29.
  • Li, D.; Tian, Y.; Qiao, Y.; Weng, L. Conversion of powdered active carbon into monoliths without reducing specific surface area using H3PO4-impregnated waste sawdust. Materials Letters 2014, 125, 175–178.
  • Qu, G.Z.; Li, J.; Liang, D.L.; Huang, D.L.; Qu, D.; Huang, Y.M. Surface modification of a granular activated carbon by dielectric barrier discharge plasma and its effects on pentachlorophenol adsorption. Journal of Electrostatics 2013, 71, 689–694.
  • Macías-García, A.; Cuerda-Correa, E.M.; Olivares-Marín, M.; Diaz-Paralejo, A.; Diaz- Diez, A. Development and characterization of carbon-honeycomb monoliths from kenaf natural fibers: A preliminary study. Industrial Crops and Products 2012, 35, 105–110.
  • Teoh, Y.P.; Khan, M.A.; Choong, T.S.Y. Kinetic and isotherm studies for lead adsorption from aqueous phase on carbon coated monolith Chemical Engineering Journal 2013, 217, 248–255.
  • Sevilla, M.; Fuertes, A.B. Fabrication of porous carbon monoliths with a graphitic framework. Carbon 2013, 56, 155–166.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.