298
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

Microscale bone grinding temperature by dynamic heat flux in nanoparticle jet mist cooling with different particle sizes

, , , , , , & show all
Pages 58-68 | Received 10 Jul 2016, Accepted 13 Sep 2016, Published online: 08 Nov 2017

References

  • Ebrahimzadeh, A.; Azimifar, F.; Nosouhi, R. Design and Manufacturing of Integrated Drilling and Cutting Orthopedic Bone-Specific Surgical Guide. Mater. Manuf. Processes 2015, 31(5), 608–611.
  • Ravindra, N. Y.; Vinod, Y. Machining Performance of Slotted-Electrical Discharge Diamond Face Grinding of Al/SiC/Gr Composite. Mater. Manuf. Processes 2014, 29(5), 585–592.
  • Zhang, L. H.; Tai, B. L.; Wang, G. J.; Zhang, K. B.; Sullivan, S.; Shih, A. J. Thermal Model to Investigate the Temperature in Bone Grinding for Skull Base Neurosurgery. Med. Eng. Phys. 2013, 35(10), 1391–1398.
  • Shih, A. J.; Tai, B. L.; Zhang, L. H.; Sullivan, S.; Malkin, S. Prediction of Bone Grinding Temperature in Skull Base Neurosurgery. CIRP Ann. Manuf. Technol. 2012, 61(1), 307–310.
  • Tai, B. L.; Zhang, L. H.; Wang, A.; Sullivan, S.; Shih, A. J. Neurosurgical Bone Grinding Temperature Monitoring. Proc. Cirp 2013, 5(1), 226–230.
  • Dingab, Z.; Lia, B.; Shao, Y.; Shaob, Y.; Liangab, S. Y. Phase Transition at High Heating Rate and Strain Rate During Maraging Steel C250 Grinding. Mater. Manuf. Processes 2016, 31(13), 1763–1769.
  • Kalita, P.; Malshe, A. P.; Arun Kumar, S. A.; Yoganath, V. G.; Gurumurthy, T. Study of Specific Energy and Friction Coefficient in Minimum Quantity Lubrication Grinding Using Oil-Based Nanolubricants. J. Manuf. Processes 2012, 14(2), 160–166.
  • Yang, M., Li, C. H.; Zhang, Y. B.; Wang, Y. G.; Li, B. K.; Hou, Y. L. Experimental Research on Microscale Grinding Temperature Under Different Nanoparticle Jet Minimum Quantity Cooling. Mater. Manuf. Processes 2016, 32(6), 589–597.
  • Yang, M.; Li, C. H.; Zhang, Y. B.; Wang, Y. G.; Li, B. K.; Jia, D. Z.; Hou, Y. L.; Li, R. Z. Research on Microscale Skull Grinding Temperature Field Under Different Cooling Conditions. Appl. Therm. Eng. 2017, 126, 525–537.
  • Zhang, Y. B.; Li, C. H.; Jia, D. Z.; Zhang, D. K.; Zhang, X. W. Experimental Evaluation of the Lubrication Performance of MoS2/CNT Nanofluid for Minimal Quantity Lubrication in Ni-Based Alloy Grinding. Int. J. Mach. Tools. Manuf. 2015, 99, 19–33.
  • Zhang, Y. B.; Li, C. H.; Jia, D. Z.; Zhang, D. K.; Zhang, X. W. Experimental Evaluation of MoS2 Nanoparticles in Jet MQL Grinding with Different Types of Vegetable Oil as Base Oil. J. Cleaner Prod. 2015, 87(1), 930–940.
  • Wang, Y. G.; Li, C. H.; Zhang, Y. B.; Yang, M.; Li, B. K.; Jia, D. Z.; Hou, Y. L.; Mao, C. Experimental Evaluation of the Lubrication Properties of the Wheel/Workpiece Interface in Minimum Quantity Lubrication (MQL) Grinding Using Different Types of Vegetable Oils. J. Cleaner Prod. 2016, 127, 487–499.
  • Zhang, X. P.; Li, C. H.; Zhang, Y. B.; Wang, Y. G.; Li, B. K.; Yang, M.; Guo, S. M.; Liu, G. T.; Zhang, N. Q. Lubricating Property of MQL Grinding of Al2O3/SiC Mixed Nanofluid with Different Particle Sizes and Microtopography Analysis by Cross-Correlation. Precis. Eng. 2016, 47, 532–545.
  • Wang, Y. G.; Li, C. H.; Zhang, Y. B.; Li, B. K.; Yang, M.; Zhang, X. P.; Guo, S. M.; Liu, G. T. Experimental Evaluation of the Lubrication Properties of the Wheel/Workpiece Interface in MQL Grinding with Different Nanofluids. Tribol. Int. 2016, 127, 487–499.
  • Zhang, Y. B.; Li, C. H.; Ji, H. J.; Yang, X. H.; Yang, M.; Jia, D. Z.; Zhang, X. P.; Li, R. Z.; Wang, J. Analysis of Grinding Mechanics and Improved Predictive Force Model Based on Material-Removal and Plastic-Stacking Mechanisms. Int. J. Mach. Tools Manuf. 2017, 122, 81–97.
  • Li, B. K.; Li, C. H.; Zhang, Y. B.; Wang, Y. G.; Jia, D. Z.; Yang, M.; Zhang, N. Q.; Wu, Q. D.; Han, Z. G.; Sun, K. Heat Transfer Performance of MQL Grinding with Different Nanofluids for Ni-Based Alloys Using Vegetable Oil. J. Cleaner Prod. 2017, 154, 1–11.
  • Yang, M.; Li, C. H.; Zhang, Y. B.; Jia, D. Z.; Zhang, X. P.; Hou, Y. L.; Li, R. Z.; Wang, J. Maximum Undeformed Equivalent Chip Thickness for Ductile-Brittle Transition of Zirconia Ceramics Under Different Lubrication Conditions. Int. J. Mach. Tools Manuf. 2017, 122, 55–65.
  • Wang, Y. G.; Li, C. H.; Zhang, Y. B.; Li, B. K.; Yang, M.; Zhang, X. P.; Guo, S. M.; Liu, G. T.; Zhai, M. G. Comparative Evaluation of the Lubricating Properties of Vegetable-Oil-Based Nanofluids Between Frictional Test and Grinding Experiment. J. Manuf. Processes 2017, 26, 94–104.
  • Zhang, Y. B.; Li, C. H.; Jia, D. Z.; Li, B. K.; Wang, Y. G.; Yang, M.; Hou, Y. L.; Zhang, X. W. Experimental Study on the Effect of Nanoparticle Concentration on the Lubricating Property of Nanofluids for MQL Grinding of Ni-Based Alloy. J. Mater. Process Technol. 2016, 232, 100–115.
  • Guo, S. M.; Li, C. H.; Zhang, Y. B.; Wang, Y. G.; Li, B. K.; Yang, M.; Zhang, X. P.; Liu, G. T. Experimental Evaluation of the Lubrication Performance of Mixtures of Castor Oil with Other Vegetable Oils in MQL Grinding of Nickel-Based Alloy. J. Cleaner Prod. 2016, 140, 1060–1076.
  • Masoumi, H.; Safavi, S. M.; Salehi, M. Grinding Force, Specific Energy and Material Removal Mechanism in Grinding of HVOF-Sprayed WC–Co–Cr Coating. Mater. Manuf. Processes 2014, 29(3), 321–330.
  • Mao, C.; Zhou, Z. X.; Ren, Y. H.; Zhang, B. Analysis and FEM Simulation of Temperature Field in Wet Surface Grinding. Mater. Manuf. Processes 2010, 25(6), 399–406.
  • Deepachitra, R.; Nigam, R.; Purohit, S. D.; Kumar, B. S.; Hemalatha, T.; Sastry, T. P. In Vitro Study of Hydroxyapatite Coatings on Fibrin Functionalized/Pristine Graphene Oxide for Bone Grafting. Mater. Manuf. Processes 2014, 30(6), 804–811.
  • Shen, B.; Shih, A. J.; Xiao, G. A Heat Transfer Model Based on Finite Difference Method for Grinding. J. Manuf. Sci. Eng. 2011, 133(3), 255–267.
  • Burr, D. B.; Turner, C. H.; Naick, P.; Forwood, M. R.; Ambrosius, W.; Hasan, M. S.; Pidaparti, R. Does Microdamage Accumulation Affect the Mechanical Properties of Bone? J. Biomech. 1998, 31(4), 337–345.
  • Li, C.; Lian, Q.; Zhuang, P.; Wang, J.; Li, D. Research on the Mechanical Properties of Bone Scaffold Reinforced by Magnesium Alloy/Bioceramics Composite with Stereolithography Double Channels. J. Biomed. Eng. 2015, 32(1), 77–81.
  • Zamblau, I.; Varvara, S.; Betak, S. A. Corrosion Behavior of Composite Coatings Obtained by Electrolytic Codeposition of Copper with Al2O3 Nanoparticles. Chem. Biochem. Eng. Q. 2009, 23(1), 43–52.
  • Cao, H.; Liu, X. Silver Nanoparticles-Modified Films Versus Biomedical Device-Associated Infections. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010, 2(6), 670–684.
  • Harizanov, O.; Surtchev, M. Glycerol Treated Aluminum Trihydroxide Sol for Coatings. Mater. Lett. 1997, 32(1), 25–28.
  • Brüggemann, D. Nanoporous Aluminium Oxide Membranes as Cell Interfaces. J. Nanomater. 2013, 2013(3), 1–18.
  • Walpole, A. R.; Xia, Z.; Wilson, C. W.; Triffitt, J. T.; Wilshaw, P. R. A Novel Nano-Porous Alumina Biomaterial with Potential for Loading with Bioactive Materials. J. Biomed. Mater. Res. Part A 2009, 90(1), 46–54.
  • Mao, C.; Tang, X.; Zou, H.; Huang, X.; Zhou, Z. Investigation of Grinding Characteristic using Nanofluid Minimum Quantity Lubrication. Int. J. Precis. Eng. Manuf. 2012, 13(10), 1745–1752.
  • Malkin, S. Grinding Technology Theory and Applications of Machining with Abrasives; Northeastern University Press: Shenyang, China, 2002.
  • Hou, Z. B.; Komanduri, R. On the Mechanics of the Grinding Process – Part I. Stochastic Nature of the Grinding Process. Int. J. Mach. Tools Manuf. 2003, 43(15), 1579–1593.
  • Francis, N. K.; Viswanadhan, K. G.; Paulose, M. M. SAFBM of Softer Materials: An Investigation into Micro-Cutting Mechanisms and the Evolution of Roughness Profile. Mater. Manuf. Processes 2016, 31(7), 969–975.
  • Gao, S; Kang, R. K.; Dong, Z. G.; Zhang, B; Wang, Z. G. Surface Integrity and Removal Mechanism in Grinding Sapphire Wafers with Novel Vitrified Bond Diamond Plates. Mater. Manuf. Processes 2017, 32(2), 121–126.
  • Dong, Y. X.; Feng, S. S.; Li, S. P.; Chen, Y. Research on the Relationship Between the Impact Explosive Temperature and Mass Ratio of PTFE/Al Reactive Material. Adv. Mater. Res. 2012, 591–593, 1017–1020.
  • Unune, D. R.; Singh, V. P.; Mali, H. S. Experimental Investigations of Abrasive Mixed Electro Discharge Diamond Grinding of Nimonic 80A. Mater. Manuf. Processes 2016, 31(13), 1718–1723.
  • Wu, S. Y.; Su, C.; Li, Y. R. The Determination of Turbulent Convective Heat Transfer Coefficient Through a Duct Considering Fouling Mass Transfer Process. J. Petrochem. Univ. 2008, 21(1), 51–54.
  • Kars, R. L.; Best, R. J.; Drinkenburg, A. A. H. The Sorption of Propane in Slurries of Active Carbon in Water. Chem. Eng. J. 1979, 17(3), 201–210.
  • Hamilton, R. L.; Crosser, O. K. Thermal Conductivity of Heterogeneous Two-Component Systems. Ind. Eng. Chem. Fundam. 1962, 1(3), 27–40.
  • Levan, K. B.; Tang, G. Z.; Ma, X. X.; Jiang, S. Q. Influence of Grinding Particle Size on Structure and Electrical Properties of LaSrMnO Compound. Mater. Manuf. Processes 2016, 31(7), 880–886.
  • Li, H.; Lin, B.; Wan, S.; Wang, Y.; Zhang, X. An Experimental Investigation on Ultrasonic Vibration Assisted Grinding of SiO/SiO Composites. Mater. Manuf. Processes 2016, 31(7), 887–895.
  • Mao, C.; Zhang, J.; Huang, Y.; Zou, H. F.; Huang, X. M.; Zhou, Z. X. Investigation on the Effect of Nanofluid Parameters on MQL Grinding. Mater. Manuf. Processes 2013, 28(4), 436–442.
  • Liu, X.; Wang, L.; Lu, H.; Wang, D.; Wang, Q.C. Z. Study Influence of Nanometer Fe3O4 Addition on the Properties of Silicone Oil-Based Magnetorheological Fluids. Mater. Manuf. Processes 2015, 30(2), 204–209.
  • Wenzel, R. N. Resistance of Solid Surfaces to Wetting by Water. J. Ind. Eng. Chem. 1936, 28(8), 988–994.
  • Pit, R.; Hervet, H.; Leger, L. Direct Experimental Evidence of Slip in Hexadecane: Solid Interfaces. Phys. Rev. Lett. 2000, 85(5), 980–983.
  • Jia, O.; Perot, B.; Rothstein, J. P. Laminar Drag Reduction in Microchannels Using Ultrahydrophobic Surfaces. APS Div. Fluid Dyn. Meet. Abstr. 2004, 16(12), 4635–4643.
  • Senthilkumar, D. Thermophysical Behavior of Cryogenically Treated Silicon Carbide for Nanofluids. Mater. Manuf. Processes 2014, 29(7), 819–825.
  • Mahbubul, I. M.; Saidur, R.; Amalina, M. A. Latest Developments on the Viscosity of Nanofluids. Int. J. Heat Mass Transfer 2012, 55(55), 874–885.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.