595
Views
16
CrossRef citations to date
0
Altmetric
Reviews

Microwave processing of titanium and titanium alloys for structural, biomedical and shape memory applications: Current status and challenges

&
Pages 35-49 | Received 31 Jul 2016, Accepted 31 Oct 2016, Published online: 12 Jan 2017

References

  • Osepchum, J.M. A history of microwave heating applications. IEEE Transactions on Microwave Theory and Techniques 1984, 32, 1200–1224.
  • Willams, J.C. Microwave Processing of Materials; National Academy Press: Washington D.C., America, 1994; 81pp.
  • Bhattacharya, M.; Basak, T. A review on the susceptor assisted microwave processing of materials. Energy 2016, 97, 306–338.
  • Thostenson, E.T.; Chou, T.–W. Microwave processing: fundamentals and applications. Composites A 1999, 30, 1055–1071.
  • Bykov, Yu.V.; Rybakov, K.I.; Semenov, V.E. High-temperature microwave processing of materials. Journal of Physics D: Applied Physics 2001, 34, R55–R75.
  • Oghbaei, M.; Mirzaee, O. Microwave versus conventional sintering: A review of fundamentals, advantages and applications. Journal of Alloys and Compounds 2010, 494, 175–189.
  • Cao, W. The Development and Application of Microwave Heating; InTech: Rijeka, Croatia, 2012.
  • Clark, D.V.; Sutton, W.H. Microwave processing of materials. Annual Review of Materials Science 1996, 26, 299–331.
  • Das, S.; Mukhopadhyay, A.K.; Datta, S.; Basu, D. Prospects of microwave processing: An overview. Bulletin of Materials Science 2008, 31, 943–956.
  • Agrawal, D. Latest global developments in microwave materials processing. Material Research Innovations 2010, 14, 3–8.
  • Singh, S.; Gupta, D.; Jain, V.; Sharma, A.K. Microwave processing of materials and applications in manufacturing industries: a review. Materials and Manufacturing Processes 2015, 30, 1–29.
  • Luo, S.D.; Qian, M.; Imam, M.A. Microwave sintering of titanium and titanium alloys. In Titanium Powder Metallurgy: Science, Technology and Applications, Qian, M. Froes, F.H. Ed.; Butterworth-Heinemann: Oxford, UK, 2015; pp. 237–252.
  • Walkiewicz, J.W.; Kazonich, G.; McGill, S.L. Microwave heating characteristics of selected minerals and compounds. Minerals and Metallurgical Processing 1988, 5, 39–42.
  • Roy, R.; Agrawal, D.; Cheng, J.P.; Gedevanishvili, S. Full sintering of powdered-metal bodies in a microwave field. Nature 1999, 399, 668–670.
  • Gupta, M.; Leong, W.W. Microwaves and metals; Wiley (Asia): Singapore, 2007.
  • Mondal, A. Microwave Sintering of Metals; LAP Lambert Academic Publishing: Saarbrücken, Germany, 2011.
  • Luo, S.D.; Yi, J.H.; Guo, Y.L.; Peng, Y.D.; Li, L.Y.; Ran, J.M. Microwave sintering of W-Cu composites: analyses of densification and microstructural homogenization. Journal of Alloys Compounds 2009, 473, L5–L9.
  • Zhou, C.S.; Yi, J.H.; Luo, S.D.; Peng, Y.D.; Li, L.Y.; Chen, G. Effect of heating rate on the microwave sintered W-Ni-Fe heavy alloys. Journal of Alloys Compounds 2009, 482, L6–L8.
  • Guo, Y.L.; Yi, J.H.; Luo, S.D.; Zhou, C.S.; Chen, L.F.; Peng, Y.D. Fabrication of W-Cu composites by microwave infiltration. Journal of Alloys Compounds 2009, 492, L75–L78.
  • Mondal, A.; Agrawal, D.; Upadhyaya, A. Microwave sintering of refractory metals/alloys: W, Mo, Re, W-Cu, W-Ni-Cu and W-Ni-Fe alloys. The Journal of Microwave Power and Electromagnetic Energy 2010, 44, 28–44.
  • Agrawal, D. Microwave sintering of metal powders. In Advances in Powder Metallurgy, Chang, I. Zhao, Y. Eds.; Woodhead Publishing Ltd.: Cambridge, UK, 2013; pp. 361–379.
  • Mishra, R.R.; Sharma, A.K. A review of research trends in microwave processing of metal-based materials and opportunities in microwave casting. Critical Reviews in Solid State and Materials Sciences 2016, 41, 217–255.
  • Gerdes, T.; Willert-Porada, M.; Park, H.S. Microwave sintering of ferrous PM materials. In Proceedings of the 2006 International Conference on Powder Metallurgy & Particulate Materials, San Diego, America, Jun 18–21, 2006, pp. 294–306.
  • Gedevanishvili, S.; Agrawal, D.; Roy, R. Microwave combustion synthesis and sintering of intermetallics and alloys. Journal of Materials Science Letters 1999, 18, 665–668.
  • Bhaduri, S.; Bhaduri, S.B.; Kutty, M.G. Metal Part Having a Dense Core and Porous Periphery, Biocompatible Prosthesis and Microwave Sintering, US Patent 2005/0032025 A1, Feb 10, 2005.
  • Kutty, M.G.; Bhaduri, S.; Bhaduri, S.B. Gradient surface porosity in titanium dental implants: relation between processing parameters and microstructure. Journal of Materials Science: Materials in Medicine 2004, 15, 145–150.
  • Kutty, M.G.; De, A.; Bhaduri, S.B.; Yaghoubi, A. Microwave-assisted fabrication of titanium implants with controlled surface topography for rapid bone healing. ACS Applied Materials & Interfaces 2014, 6, 13587–13593.
  • Tang, C.Y.; Bao, S.P.; Tsui, P.; Yue, M. Rapid Fabrication of Porous Metal-Based Biomaterial by Microwave Sintering, US Patent 2011/0020168 A1, Jan 17, 2011.
  • Tang, C.Y.; Wong, C.T.; Zhang, L.N.; Choy, M.T.; Chow, T.W.; Chan, K.C.; Yue, T.M.; Chen, Q. In situ formation of Ti alloy/TiC porous composites by rapid microwave sintering of Ti6Al4V/MWCNTs powder. Journal of Alloys Compounds 2013, 557, 67–72.
  • Choy, M.T.; Tang, C.Y.; Chen, L.; Wong, C.T.; Tsui, C.P. In vitro and in vivo performance of bioactive Ti6Al4V/TiC/HA implants fabricated by a rapid microwave sintering technique. Materials Science and Engineering C 2014, 42, 746–756.
  • Choy, M.T.; Tang, C.Y.; Chen, L.; Law, W.C.; Tsui, C.P.; Lu, W.W. Microwave assisted-in situ synthesis of porous titanium/calcium phosphate composites and their in vitro apatite-forming capability. Composite B 2015, 83, 50–57.
  • Suraneni, S. Microwave assisted reactive sintering of TiNi shape memory alloy. Master Thesis, The University of Toledo, 2011.
  • Tang, C.Y.; Zhang, L.N.; Wong, C.T.; Chan, K.C.; Yue, T.M. Fabrication and characteristics of porous NiTi shape memory alloy synthesized by microwave sintering. Materials Science Engineering A 2011, 528, 6006–6011.
  • Xu, J.L.; Jin, X.F.; Luo, J.M.; Zhong, Z.C. Fabrication and properties of porous NiTi alloys by microwave sintering for biomedical applications. Materials Letter 2014, 124, 110–112.
  • Xu, J.L.; Bao, L.Z.; Liu, A.H.; Jin, X.F.; Tong, Y.X.; Luo, J.M.; Zhong, Z.C.; Zheng, Y.F. Microstructure, mechanical properties and superelasticity of biomedical porous NiTi alloy prepared by microwave sintering. Materials Science and Engineering C 2015, 46, 387–393.
  • Xu, J.L.; Bao, L.Z.; Liu, A.H.; Jin, X.F.; Luo, J.M.; Zhong, Z.C.; Zheng, Y.F. Effect of pore sizes on the microstructure and properties of the biomedical porous NiTi alloys prepared by microwave sintering. Journal of Alloys Compounds 2015, 645, 137–142.
  • Hayashi, T. Microwave sintering of metal matrix alloys. In Reports of Research Institute of Industrial Products Technology, Research Institute Industrial Products Technology, Gifu, 2005.
  • Sato, M.; Fukusima, H.; Ozeki, F.; Hayasi, T.; Satito, Y.; Takayama, S. Experimental investigation of mechanism of microwave heating in powder metals. In 2004 Joint 29th International Conference on Infrared and Millimeter Waves and 12th International Conference on Terahertz Electronics, Karlsruhe, Germany, 2004; pp. 831.
  • Buchelnikov, V.D.; Louzguine-Luzgin, D.V.; Xie, G.; Li, S.; Yoshikawa, N.; Sato, M.; Anzulevich, A.P.; Bychkov, I.V.; Inoue, A. Heating of metallic powders by microwaves: experiment and theory. Journal of Applied Physics 2008, 104, 113505.
  • Luo, S.D.; Bettles, C.J.; Yan, M.; Schaffer, G.B.; Qian, M. Microwave sintering of titanium. Key Engineering Materials 2010, 436, 141–147.
  • Luo, S.D.; Yang, Y.F.; Schaffer, G.B.; Qian, M. Characteristics of microwave sintering of titanium powder compacts. In Proceedings of the 12th World Conference on Titanium, Beijing, China, Jun 19–24, 2011; pp. 1826.
  • Hashiguchi, T.; Sueyoshi, H. Effect of atmosphere on microwave heating of titanium powder. Powder Metallurgy 2011, 54, 537.
  • Luo, S.D.; Yan, M.; Schaffer, G.B.; Qian, M. Sintering of titanium in vacuum by microwave radiation. Metallurgy and Materials Transaction A 2011, 42, 2466–2474.
  • Luo, S.D.; Guan, C.L.; Yang, Y.F.; Schaffer, G.B.; Qian, M. Microwave heating, isothermal sintering, and mechanical properties of powder metallurgy titanium and titanium alloys. Metallurgy and Materials Transaction A 2013, 44, 1842–1851.
  • Luo, S.D.; Li, Q.; Tian, J.; Wang, C.; Yan, M.; Schaffer, G.B.; Qian, M. Novel fabrication of titanium by pure microwave radiation of titanium hydride powder. Scripta Materialia 2013, 69, 69–72.
  • Imam, M.A.; Feng, J.; Rock, B.Y.; Fliflet, A.W. Processing of titanium and its alloys by microwave energy. Advanced Materials Research 2014, 1019, 11–18.
  • Sun, Y.Y.; Luo, S.D.; Yang, Y.F.; Sun, J.F.; Qian, M. A detailed experimental assessment of microwave heating of titanium hydride powder. Key Engineering Materials 2016, 704, 388–399.
  • Marcelo, T.; Mascarenhas, J.; Oliveira, F.A.C. Microwave sintering-a novel approach to powder technology. Materials Science Forum 2010, 636–637, 946–951.
  • Fliflet, A.W.; Miller, S.L.; Imam, M.A. Evaluation of microwave-sintered titanium and titanium alloy powder compacts. Ceramic Transactions 2012, 234, 83–92.
  • Imam, M.A.; Rock, B.Y.; Rowland, R.; Zarah, T.F.; Akhtar, K. Consolidation of Cristal metals powder of titanium and its alloys by microwave energy to near-net shape. In Proceedings of the 13th World Conference on Titanium, San Diego, America, Aug 16–20, 2015.
  • Van Vuuren, D.S.; Imam, M.A.; Oosthuizen, S.J.; Rock, B.Y.; Zarah, T.F.; Chikwanda, H.; Mahlatji, L. Characterization of CSIR-Ti powder and its consolidation by microwave sintering. In Proceedings of the 13th World Conference on Titanium, San Diego, America, Aug 16–20, 2015.
  • Xiao, Y.; Xu, F.; Hu, X.; Li, Y.; Liu, W.; Dong, B. In situ investigation of titanium powder microwave sintering by synchrotron radiation computed tomography. Metals 2016, 6. doi:10.3390/met6010009
  • Kutty, M.G.; Bhaduri, S.; Jokisaari, J.R.; Bhaduri, S.B. Development of gradient porosities in Ti dental implant. Proceedings of 25th Annual Conference on Composites. Advanced Ceramics, Materials, and Structures: B: Ceramic Engineering and Science 2008, 22, 1–10.
  • Yan, M.; Qian, M.; Kong, C.; Dargusch, M.S. Impacts of trace carbon on the microstructure of as-sintered biomedical Ti-15Mo alloy and reassessment of the maximum carbon limit. Acta Biomaterialia 2014, 10, 1014–1023.
  • Bruce, R.W.; Fliflet, A.W.; Huey, H.E.; Stephenson, C.; Imam, M.A. Microwave sintering and melting of titanium powder for low-cost processing. Key Engineering Materials 2010, 436, 131–140.
  • http://www.afsinc.org/files/1412-555%20energy%20public_1383851915248_7.pdf.
  • Jokisaari, J.R.; Bhaduri, S.; Bhaduri, S.B. Microwave activated combustion synthesis of titanium aluminides. Materials Science Engineering A 2005, 394, 385–392.
  • Rosa, R.; Veronesi, P.; Han, S.; Casalegno, V.; Salvo, M.; Elena, C.; Leonelli, C.; Ferraris, M. Microwave assisted combustion synthesis in the system Ti-Si-C for the joining of SiC: Experimental and numerical simulation results. Journal of the European Ceramic Society 2013, 33, 1707–1719.
  • Batanov, G.M.; Berezhetskaya, N.K.; Borzosekov, V.D.; Iskhakova, L.D.; Kolik, L.V.; Konchekov, E.M.; Letunov, A.A.; Malakhov, D.V.; Milovich, F.O.; Obraztsova, E.A.; Obraztsova, E.D.; Petrov, A.E.; Sarksyan, K.A.; Skvortsova, N.N.; Stepakhin, V.D.; Kharchev, N.K. Application of microwave discharge for the synthesis of TiB2 and BN nano- and microcrystals in a mixture of Ti–B powders in a nitrogen atmosphere. Plasma Physics Reports 2013, 39, 843–848.
  • Wang, Q.; Hu, C.; Huang, Q.; Cai, S.; Sakka, Y.; Grasso, S. Synthesis of high-purity Ti3SiC2 by microwave sintering. International Journal of Applied Ceramic Technology 2014, 11, 911–918.
  • Kashimura, K.; Fukushima, J.; Sato, M. Oxygen partial pressure change with metal titanium powder nitriding under microwave heating. ISIJ International 2011, 51, 181–185.
  • Doroudian, M. Microwave induced plasma (MIP) nitriding of titanium alloy Ti-6Al-4V. Doctorial thesis, University of Wollongong, 1995.
  • Cardoso, R.P.; Arnoult, G.; Belmonte, T.; Henrion, G.; Weber, S. Titanium nitriding by microwave atmospheric pressure plasma: towards single crystal synthesis. Plasma Processes and Polymers 2009, 6, S302–S305.
  • Maxim, I.; Tanaka, M. Numerical analysis of the microwave heating of compacted copper powders in single-mode cavity. Japanese Journal of Applied Physics 2011, 50, 097302.
  • Tanaka, M.; Kono, H.; Maruyama, K. Selective heating mechanism of magnetic metal oxides by a microwave magnetic field. Physics Review B 2009, 79, 104420.
  • Mishra, P.; Sethi, G.; Upadhyaya, A. Modeling of microwave heating of particulate metals. Metallurgical and Materials Transactions B 2006, 37, 839–845.
  • Mondal, A.; Agrawal, D.; Upadhyaya, A. Microwave heating of pure copper powder with varying particle size and porosity. The Journal of Microwave Power and Electromagnetic Energy 2009, 43, 5–10.
  • Cheng, J.; Roy, R.; Agrawal, D. Experimental proof of major role of magnetic field losses in microwave heating of metal and metallic composites. Journal of Materials Science Letters 2001, 20, 1561–1563.
  • Cheng, J.; Roy, R.; Agrawal, D. Radically different effects on materials by separated microwave electric and magnetic fields. Material Research Innovations 2002, 5, 170–177.
  • Persson, F.; Eliasson, A.; Jönsson, P.G. Oxidation of water atomized metal powders. Steel Research International 2014, 85, 1629–1638.
  • Ma, J.; Diehl, J.F.; Johnson, E.J.; Martin, K.R.; Miskovsky, N.M.; Smith, C.T.; Weisel, G.J.; Weiss, B.L.; Zimmerman, D.T. Systematic study of microwave absorption, heating, and microstructure evolution of porous copper powder metal compacts. Journal of Applied Physics 2007, 101, 074906.
  • Lu, G.; Bernasek, S.L.; Schwartz, J. Oxidation of a polycrystalline titanium surface by oxygen and water. Surface Science 2000, 458, 80–90.
  • Peelamedu, R.D.; Fleming, M.; Agrawal, D.K.; Roy, R. Preparation of titanium nitride: microwave-induced carbothermal reaction of titanium dioxide. Journal of the American Ceramic Society 2002, 85, 117–122.
  • Cheng, J.P.; Agrawal, D.K.; Komarneni, S.; Mathis, M.; Roy, R. Microwave processing of WC-Co composites and ferroic titanates. Material Research Innovations 1997, 1, 44–52.
  • Cottrell, A. An introduction to metallurgy, 2nd ed.; IOM: London, 1975, pp. 495.
  • Crosby, K.; Shaw, L.L.; Estournes, C.; Chevallier, G.; Fliflet, A.W.; Imam, M.A. Enhancement in Ti-6Al-4V sintering via nanostructured powder and spark plasma sintering. Powder Metallurgy 2014, 57, 147–154.
  • http://www.ceralink.com/sites/default/files/EvaluationofSiCHeatinginaMicrowaveField.pdf (accessed December 28, 2017).
  • Luo, S.D.; Yang, Y.F.; Schaffer, G.B.; Qian, M. Calibration of temperature measurement by infrared pyrometry in microwave heating of powder materials: an exothermic reaction based approach. The Journal of Microwave Power and Electromagnetic Energy 2013, 47, 5–11.
  • Cresson, P.–Y.; Ricard, C.; Dubois, L.; Vaucher, S.; Lasri, T.; Pribetich, J. In Instrumentation and Measurement Technology Conference Proceedings, Victoria America, 2008; pp. 1344.
  • Pert, E.; Carmel, Y.; Birnboim, A.; Olorunyolemi, T.; Gershon, D.; Calame, J.; Lloyd, I.K.; Wilson, Jr.O.C. Temperature measurements during microwave processing: the significance of thermocouple effects. Journal of the American Ceramic Society 2001, 84, 1981–1986.
  • Durka, T.; Stefanidis, G.D.; Gerven, T.V.; Stankiewicz, A. On the accuracy and reproducibility of fiber optic (FO) and infrared (IR) temperature measurements of solid materials in microwave applications. Measurement Science and Technology 2000, 21, 045108.
  • http://support.fluke.com/raytek-sales/Download/Asset/IR_THEORY_55514_ENG_REVB_LR.PDF (accessed December 28, 2017).
  • Sievers, A.J. Temperature dependence of the emissivity of transition metals. Solar Energy Materials 1979, 1, 431–439.
  • Cheng, S.X.; Cebe, P.; Hanssen, L.M.; Riffe, D.M.; Sievers, A.J. Hemispherical emissivity of V, Nb, Ta, Mo, and W from 300 to 1000 K. Journal of the Optical Society of America B 1987, 4, 351–356.
  • Michels, W.C.; Wilford, S.The physical properties of titanium.I. Emissivity and resistivity of the commercial metal. Journal of Applied Physics 1949, 20, 1223–1226.
  • Shur, B.A.; Peletskii, V.E. The effect of alloying additions on the emissivity of titanium in the neighborhood of polymorphous transformation. High Temperature 2004, 42, 414–420.
  • Katz, J.D. Microwave sintering of ceramics. Annual Review of Materials Science 1992, 22, 153–170.
  • Menezes, R.R.; Souto, P.M.; Kiminami, R.H.G.A. Microwave fast sintering of ceramic materials. In Sintering of Ceramics - New Emerging Techniques, Lakshmanan, A. Eds.; InTech: Croatia, 2012.
  • Wang, H.T.; Fang, Z.Z.; Sun, P. A critical review of mechanical properties of powder metallurgy titanium. International Journal of Powder Metallurgy 2010, 46, 45–57.
  • Heaney, D.F.; German, R.M. Advances in the sintering of titanium powders. In Proceedings of the PM 2004 Powder Metallurgy World Congress, Danninger, H., Ratzi, R., Eds.; European Powder Metallurgy Association: Shrewsbury, UK, 2004; pp. 222–227.
  • Saito, T. A cost-effective P/M titanium matrix composite for automobile use. Advanced Performance Materials 1995, 2, 121–144.
  • Yamamoto, Y.; Kiggans, J.O.; Clark, M.B.; Nunn, S.D.; Sabau, A.S.; Peter, W.H. Consolidation process in near net. Shape manufacturing of Armstrong CP-Ti/Ti-6Al-4V. Key Engineering Materials 2010, 436, 103–111.
  • Abkowitz, S.; Siergiej, J.M.; Regan, R.D. Titanium P/M, preforms, parts and composites. In Modern Developments in Powder Metallurgy. Hausner, H.H. Eds.; Metal Powder Industries Federation: Princeton, America, 1971; pp. 501–511.
  • Hanson, A.D.; Runkle, J.C.; Widmer, R.; Hebeisen, J.C. Titanium near net shapes from elemental Powder. International Journal of Powder Metallurgy 1990, 26, 157–164.
  • Froes, F.H.; Mashl, S.J.; Moxson, V.S.; Hebeisen, J.C.; Duz, V.A. The technologies of titanium powder metallurgy. JOM 2004, 56, 46–48.
  • Ivasishin, O.M.; Savvakin, D.G.; Bielov, I.S.; Moxson, V.S.; Duz, V.A.; Davies, R.; Lavender, C. Microstructure and properties of titanium alloys synthesized from hydrogenated titanium powders. In Proceedings of Conference on Science and Technology of Powder Materials: Synthesis, Consolidation and Properties, Pittsburg, America, Sep 25–28, 2005; pp. 151–158.
  • Moody, N.R.; Garrison, J.R.; W.M.; Smugeresky, J.E.; Costa, J.E. The role of inclusion and pore content on the fracture toughness of powder-processed blended elemental titanium alloys. Metallurgical Transactions A 1993, 24, 161–174.
  • Guo, H.; Zhao, Z.; Duan, C.; Yao, Z. The powder sintering and isothermal forging of Ti-10V-2Fe-3Al. JOM 2008, 60, 47–49.
  • Yang, Y.F.; Luo, S.D.; Schaffer, G.B.; Qian, M. Sintering of Ti-10V-2Fe-3Al and mechanical properties. Materials Science and Engineering A 2011, 528, 6719–6726.
  • Nakamori, Y.; Orimo, S.; Tsutaoka, T. Dehydriding reaction of metal hydrides and alkali borohydrides enhanced by microwave irradiation. Applied Physics Letters 2006, 88, 112104.
  • Matsuo, M.; Nakamori, Y.; Yamada, K.; Orimo, S. Effects of microwave irradiation on the dehydriding reaction of the composites of lithium borohydride and microwave absorber. Applied Physics Letters 2007, 90, 232907.
  • Nakamori, Y.; Matsuo, M.; Yamada, K.; Tsutaoka, T.; Orimo, S. Effects of microwave irradiation on metal bydrides and complex hydrides. Journal of Alloys Compounds 2007, 446–447, 698–702.
  • Sun, P.; Fang, Z.Z. Sintering of CP-Ti by the hydrogen sintering and phase transformation (HSPT) process; In Proceedings of the 2012 International Conference on Powder Metallurgy & Particulate Materials, Nashville, America, Jun 10–13, 2012.
  • Vleugels, J.; van Deursen, J.; van Roey, O.; van der Biest, O.; Luypaert, P. Hybrid microwave sintering of titanium biomedical implants. In Proceedings of the 13th International Conference on Microwave and High Frequency Heating, Toulouse, France, Sep 5–8, 2011, pp. 305–308.
  • Puleo, D.A.; Nanci, A. Understanding and controlling the bone-implant interface. Biomaterials 1999, 20, 2311–2321.
  • Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants-A review. Progress in Materials Science 2009, 54, 397–425.
  • Ayers, R.A.; Simske, S.J.; Bateman, T.A.; Etkus, A.; Sachdeva, R.L.; Gyunter, V.E. Effect of nitinol implant porosity on cranial bone ingrowth and apposition after 6 weeks. Journal of Biomedical Materials Research 1999, 45, 42–47.
  • Yu, P.; Stephani, G.; Luo, S.D.; Goehler, H.; Qian, M. Microwave-assisted fabrication of titanium hollow spheres with tailored shell structures for various potential applications. Materials Letters 2012, 86, 84–87.
  • Dalton, R.C.; Ahmad, I.; Clark, D.E. Combustion synthesis using microwave energy. Ceramic Engineering & Science Proceedings 1990, 11, 1729–1742.
  • Morsi, K. The diversity of combustion synthesis processing: a review. Journal of Materials Science 2012, 47, 68–92.
  • Rosa, R.; Veronesi, P.; Leonelli, C. A review on combustion synthesis intensification by means of microwave energy. Chemical Engineering and Processing 2013, 71, 2–18.
  • Vaucher, S.; Stir, M.; Ishizaki, K.; Catala-Civera, J.-M.; Nicula, R. Reactive synthesis of Ti-Al intermetallics during microwave heating in an E-field maximum. Thermochimica Acta 2011, 522, 151–154.
  • Blair, R.G.; Gillan, E.G.; Nguyen, N.K.B.; Daurio, D.; Kaner, R.B. Rapid solid-state synthesis of titanium aluminides. Chemical Materials 2003, 1, 3286–3293.
  • Rosa, R.; Veronesi, P.; Leonelli, C.; Poli, G.; Casagrande, A. Single step combustion synthesis of β-NiAl-coated γ-TiAl by microwave ignition and subsequent annealing. Surface and Coatings Technology 2013, 232, 666–673.
  • Qian, M. Cold compaction and sintering of titanium and its alloys for near-net-shape or preform fabrication. International Journal of Powder Metallurgy 2010, 46, 29–44.
  • German, R.M. Status of metal powder injection molding of titanium. International Journal of Powder Metallurgy 2010, 46, 11–17.
  • Cao, F.; Ravi Chandran, K.S. Fatigue performance of powder metallurgy (PM) Ti-6Al-4V Alloy: a critical analysis of current fatigue data and metallurgical approaches for improving fatigue strength. JOM 2016, 68, 735–746.
  • Saito, T.; Furuta, T. Sintered Powdered Titanium Alloy and Method of Production the Same, US Patent 5,409,518, Apr 25, 1995.
  • Imam, M.A.; Fliflet, A. Sintering of Metal and Alloy Powders by Microwave/Millimetre-Wave Heating, US Patent 8,431,071 B2, Apr 30, 2013.
  • Chen, W.; Yamamoto, Y.; Peter, W.H.; Clark, M.B.; Nunn, S.D.; Kiggans, J.O.; Muth, T.R.; Blue, C.A.; Williams, J.C.; Akhtar, K. The investigation of die-pressing and sintering behavior of ITP CP-Ti and Ti-6Al-4V powders. Journal of Alloys and Compounds 2012, 541, 440–447.
  • Kondoh, M.; Saito, T.; Takamiya, H. Green Compact and Process for Compacting the Same, Metallic Sintered Body and Process for Producing the Same, Worked Component Part and Method of Working. US Patent 2004/0013558 A1, Jan 22, 2004.
  • Luo, S.D.; Yang, Y.F.; Schaffer, G.B.; Qian, M. Warm die compaction and sintering of titanium and titanium alloy powders. Journal of Materials Processing Technology 2014, 214, 660–666.
  • Xu, Y.; Nash, P. Sintering mechanisms of Armstrong prealloyed Ti–6Al–4V powders. Materials Science and Engineering A 2014, 607, 409–416.
  • Komarov, V.V. Handbook of Dielectric and Thermal Properties of Materials at Microwave Frequencies; Artech House: Boston, America, 2012.
  • Sanad, M.M.S.; Rashad, M.M.; Abdel-Aal, E.A.; Shahat, M.F. Mechanical, morphological and dielectric properties of sintered mullite ceramics at two different heating rates prepared from alkaline monophasic salt. Ceramics International 2013, 39, 1547–1554.
  • Souto, P.M.; Menezes, R.R.; Kiminami, R.H.G.A. Evaluation of the influence of MgO and La2O3 on the fast sintering of mullite. Materials Research 2015, 18, 42–53.
  • Souto, P.M.; Menezes, R.R.; Kiminami, R.H.G.A. Effect of Y2O3 additive on conventional and microwave sintering of mullite. Ceramics International 2011, 37, 241–248.
  • Sabat, K.C.; Rajput, P.; Paramguru, R.K.; Bhoi, B.; Mishra, B.K. Reduction of oxide minerals by hydrogen plasma: a review. Plasma Chemistry and Plasma Processing 2014, 34, 1–23.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.