159
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Li2O–ZnO–Co3O4–TiO2 composite thin-film electrocatalyst for efficient water oxidation catalysis

Pages 431-441 | Received 24 Jun 2016, Accepted 01 Nov 2016, Published online: 04 Jan 2017

References

  • Kanan, M.W.; Nocera, D.G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072–1075.
  • Reece, S.Y.; Hamel, J.A.; Sung, K.; Jarvi, T.D.; Esswein, A.J.; Pijpers, J.J.H.; Nocera, D.G. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 2011, 334, 645–648.
  • Pijpers, J.J.H.; Winkler, M.T.; Surendranath, Y.; Buonassisi, T.; Nocera, D.G. Light-induced water oxidation at silicon electrodes functionalized with a cobalt oxygen-evolving catalyst. Proceedings of National Academy of Sciences USA 2011, 108, 10056–10061.
  • Yin, Q.; Tan, J.M.; Besson, C.; Geletii, Y.V.; Musaev, D.G.; Kuznetsov, A.E.; Luo, Z.; Hardcastle, K.I.; Hill, C.L. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 2010, 328, 342–345.
  • Pagan, E.A.H.; Barbosa, N.M.V.; Wang, T.; Zhao, Y.; Smotkin, E.S.; Mallouk, T.E. Resistance and polarization losses in aqueous buffer-membrane electrolytes for water-splitting photoelectrochemical cells. Energy Environmental Sciences 2012, 5, 7582–7589.
  • Natali, M.; Berardi, S.; Sartorel, A.; Bonchio, M.; Campagna, S.; Scandola, F. Is [Co4(H2O)2([α]-PW9O34)2]10− a genuine molecular catalyst in photochemical water oxidation? Answers from time-resolved hole scavenging experiments. Chemical Communications 2012, 48, 8808–8810.
  • Jiao, F.; Frei, H. Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts. Angewente Chemie International England 2009, 48, 1841–1844.
  • Stracke, J.J.; Finke, R.G. Electrocatalytic water oxidation beginning with the cobalt polyoxometalate [Co4(H2O)2(PW9O34)2]10–: identification of heterogeneous CoOx as the dominant catalyst. Journal of the American Chemical Society 2011, 133, 14872–14875.
  • Ganesh, I. Conversion of carbon dioxide into methanol – a potential liquid fuel: Fundamental challenges and opportunities (a review). Renewable Sustainable Energy Revviews 2014, 31, 221–257.
  • Ganesh, I. Electrochemical conversion of carbon dioxide into renewable fuel chemicals - the role of nanomaterials and the commercialization. Renewable and Sustainable Energy Reviews 2016, 59, 1269–1297.
  • Ganesh, I. Solar fuels vis-à-vis electricity generation from sunlight: the current state-of-the-art. Renewable and Sustainable Energy Reviews 2015, 44, 904–932.
  • Ganesh, I.; Kumar, P.P.; Annapoorna, I.; Sumliner, J.M.; Ramakrishna, M.; Hebalkar, N.Y.; Padmanabham, G.; Sundararajan, G. Preparation and characterization of Cu-doped TiO2 materials for electrochemical, photoelectrochemical, and photocatalytic applications. Appllied Surface Science 2014, 293, 229–247.
  • Ganesh, I.; Gupta, A.K.; Kumar, P.P.; Chandra Sekhar, P.S.; Radha, K.; Padmanabham, G.; Sundararajan, G. Preparation and characterization of Co-doped TiO2 materials for solar light induced current and photocatalytic applications. Materials Chemistry Physics 2012, 135, 220–234.
  • Hull, T.R.; Colligon, J.S.; Hill, A.E. Measurement of thin film adhesion. Vacuum 1987, 37, 327–330.
  • Lv, H.; Song, J.; Geletii, Y.V.; Vickers, J.W.; Sumliner, J.M.; Musaev, D.G.; Kögerler, P.; Zhuk, P.F.; Bacsa, J.; Zhu, G.; Hill, C.L. An exceptionally fast homogeneous carbon-free cobalt-based water oxidation catalyst. Journal of the American Chemical Society 2014, 136, 9268–9271.
  • Hunter, B.M.; Blakemore, J.D.; Deimund, M.; Gray, H.B.; Winkler, J.R.; Müller, A.M. Highly active mixed-metal nanosheet water oxidation catalysts made by pulsed-laser ablation in liquids. Journal of the American Chemical Society 2014, 136, 13118–13121.
  • Eisenberg, D.; Ahn, H.S.; Bard, A.J. Enhanced photoelectrochemical water oxidation on bismuth vanadate by electrodeposition of amorphous titanium dioxide. Journal of the American Chemical Society 2014, 136, 14011–14014.
  • Lai, Y.-H.; Lin, C.-Y.; Lv, Y.; King, T.C.; Steiner, A.; Muresan, N.M.; Gan, L.; Wright, D.S.; Reisner, E. Facile assembly of an efficient CoOx water oxidation electrocatalyst from Co-containing polyoxotitanate nanocages. Chemical Communications 2013, 49, 4331–4333.
  • Kenney, M.J.; Gong, M.; Li, Y.; Wu, J.Z.; Feng, J.; Lanza, M.; Dai, H. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 2013, 342, 836–840.
  • Gong, M.; Li, Y.; Wang, H.; Liang, Y.; Wu, J.Z.; Zhou, J.; Wang, J.; Regier, T.; Wei, F.; Dai, H. An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. Journal of the American Chemical Society 2013, 135, 8452–8455.
  • Zidki, T.; Zhang, L.; Shafirovich, V.; Lymar, S.V. Water oxidation catalyzed by cobalt(II) adsorbed on silica nanoparticles. Journal of the American Chemical Society 2012, 134, 14275–14278.
  • Chen, Y.W.; Prange, J.D.; Dühnen, S.; Park, Y.; Gunji, M.; Chidsey, C.E.D.; McIntyre, P.C. Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. Nature Materials 2011, 10, 539–544.
  • Ellis, W.C.; McDaniel, N.D.; Bernhard, S.; Collins, T.J. Fast water oxidation using iron. Journal of the American Chemical Society 2010, 132, 10990–10991.
  • Long, T.; Xu, L.; Zhang, T.; Wang, Y. Facile synthesis of titania monolith and the investigation of its photocatalytic activity. Materials and Manufacturing Processes 2014, 29 (6), 743–747.
  • Zhang, Q.; Li, F.; Chang, X.; He, D. Comparison of nickel foam/Ag-supported ZnO, TiO2, and WO3 for toluene photodegradation. Materials and Manufacturing Processes 2014, 29 (7), 789–794.
  • Subakova, I.; Petukhov, I.; Medvedeva, N. Obtaining of Ni–P–TiO2 composite coatings with TiO2 sol and surfactants and their properties. Materials and Manufacturing Processes 2015, 30 (6), 766–770.
  • Xu, J.; Sun, P.; Zhang, X.; Jiang, P.; Cao, W.; Chen, P.; Jin, H. Synthesis of N-doped TiO2 with different nitrogen concentrations by mild hydrothermal method. Materials and Manufacturing Processes 2014, 29 (10), 1162–1167.
  • Ganesh, I. Emulsion based sol-gel route for high efficient phosphorous doped TiO2 nano-powder for photocatalytic methylene blue degradation in water. Materials and Manufacturing Processes, (accepted, 2016).
  • Ganesh, I. Hydrolysis induced aqueous gelcasting: a latest concept for net shape consolidation of ceramics. Materials and Manufacturing Processes 2012, 27, 233–241.
  • Bard, A.J.; Faulkner, L.R. Electrochemical methods: fundamentals and applications, New York: Wiley, 2001, 2nd ed. Russian Journal of Electrochemistry 2002, 38, 1364–1365.
  • Ganesh, I.; Dom, R.; Borse, P.H.; Annapoorna, I.; Padmanabham, G.; Sundararajan, G. Fabrication and photoelectrochemical characterization of Fe, Co, Ni and Cu-doped TiO2 thin films. Materials Science Forum 2013, 764, 266–283.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.