329
Views
33
CrossRef citations to date
0
Altmetric
Original Articles

Influence of minimum quantity lubrication parameters on grind-hardening process

, , , &
Pages 69-76 | Received 03 Jul 2016, Accepted 25 Nov 2016, Published online: 11 Jan 2017

References

  • Brockhoff, T.; Brinksmeier, E. Grind-hardening: a comprehensive view. CIRP Annals-Manufacturing Technology 1999, 48 (1), 255–260.
  • Salonitis, K.; Tsoukantas, G.; Drakopoulos, S.; Stavropoulos, P.; Chryssolouris, G. Environmental impact assessment of grind-hardening process. Proceedings of the 13th CIRP International Conference on Life Cycle Engineering 2006, 657–662.
  • Nguyen, T.; Liu, M.; Zhang, L.C.; Wu, Q.; Sun, D. An investigation of the grinding-hardening induced by traverse cylindrical grinding. Journal of Manufacturing Science and Engineering of the ASME 2014, 136 (5), 051008-051008-10.
  • Foeckerer, T.; Zaeh, M.F.; Zhang, O.B. A three-dimensional analytical model to predict the thermo-metallurgical effects within the surface layer during grinding and grind-hardening. International Journal of Heat and Mass Transfer 2013, 56 (1), 223–237.
  • Salonitis, K.; Stavropoulos, P.; Kolios, A. External grind-hardening forces modelling and experimentation. The International Journal of Advanced Manufacturing Technology 2014, 70 (1–4), 523–530.
  • Sölter, J.; Eckebrecht, J.; Kolkwitz, B.; Heinzel, C. Analysis of the distortion and compensation potential in grind-hardening of linear guides. Journal of Materials Science and Engineering Technology 2016, 47 (8), 726–734.
  • Kolkwitz, B.; Foeckerer, T.; Huntemann, J.W.; Heinzel, C.; Zaeh, M.F.; Brinksmeier, E. Identification and analysis of part distortion resulting from grind-hardening process using computer-based methods. Proceedings of the 3rd International Conference on Distortion Engineering 2011, 499–506.
  • Salonitis, K. On surface grind hardening induced residual stresses. Procedia CIRP 2014, 13, 264–269.
  • Salonitis, K.; Kolios, A. Experimental and numerical study of grind-hardening-induced residual stresses on AISI 1045 Steel. The International Journal of Advanced Manufacturing Technology 2015, 79 (9–12), 1443–1452.
  • Alonso, U.; Ortega, N.; Sanchez, J.A.; Pombo, I.; Plaza, S.; Izquierdo, B. In-process prediction of the hardened layer in cylindrical traverse grind-hardening. The International Journal of Advanced Manufacturing Technology 2014, 71 (1–4), 101–108.
  • Li, J.; Liu, S.; Du, C. Experimental research and computer simulation of face grind-hardening technology. Journal of Mechanical Engineering 2013, 59 (2), 81–88.
  • Nguyen, T.; Zhang, L.C. Grinding-hardening using dry air and liquid nitrogen: Prediction and verification of temperature fields and hardened layer thickness. International Journal of Machine Tools and Manufacture 2010, 50 (10), 901–910.
  • Alonso, U.; Ortega, N.; Sanchez, J.A.; Pombo, I.; Izquierdo, B.; Plaza, S. Hardness control of grind-hardening and finishing grinding by means of area-based specific energy. International Journal of Machine Tools and Manufacture 2015, 88, 24–33.
  • Nguyen, T.; Zarudi, I.; Zhang, L.C. Grinding-hardening with liquid nitrogen: Mechanisms and technology. International Journal of Machine Tools and Manufacture 2007, 47, 97–106.
  • Liu, S.Y.; Yang, G.; Zheng, J.Q.; Liu, X.H. Numerical and experimental studies on grind-hardening cylindrical surface. The International Journal of Advanced Manufacturing Technology 2015, 76 (1–4), 487–499.
  • Salonitis, K.; Chryssolouris, G. Cooling in grind-hardening operations. The International Journal of Advanced Manufacturing Technology 2007, 33, 285–297.
  • Kolkwitz, B.; Foeckerer, T.; Heinzel, C.; Zaeh, M.F.; Brinksmeier, E. Experimental and numerical analysis of the surface integrity resulting from outer-diameter grind-hardening. Procedia Engineering 2011, 19, 222–227.
  • Sharma, V.S.; Singh, G.; Sorby, K. A Review on Minimum Quantity Lubrication for Machining Processes, International Journal of Materials and Manufacturing Processes 2015, 30 (8), 935–953.
  • Balan, A.S.S.; Vijayaraghavan, L.; Krishnamurthy, R. Minimum quantity lubricated grinding of Inconel 751 alloy. International Journal of Materials and Manufacturing Processes 2013, 28 (4), 430–435.
  • Shao, Y.M.; Fergani, O.; Ding, Z.S.; Li, B.Z.; Liang, S.Y. Experimental investigation of residual stress in minimum quantity lubrication grinding of AISI 1018 Steel. Journal of Manufacturing Science and Engineering of the ASME 2015, 138 (1), 011009-011009-7.
  • Lukasz, M.B.; Andre, D.B. Application of minimum quantity lubrication in grinding. International Journal of Materials and Manufacturing Processes 2012, 27, 406–411.
  • Mao, C.; Zhang, J.; Huang, Y. Investigation on the effect of nanofluid parameters on MQL grinding. International Journal of Materials and Manufacturing Processes 2013, 28 (4), 436–442.
  • Chetan; Ghosh, S.; Rao, P.V. Environment friendly machining of Ni-Cr-Co based super alloy using different sustainable techniques. International Journal of Materials and Manufacturing Processes 2016, 31 (7), 852–859.
  • Tawakoli, T.; Hadad, M.J.; Sadeghi, M.H. Investigation on minimum quantity lubricant-MQL grinding of 100Cr6 hardened steel using different abrasive and coolant-lubricant types. International Journal of Machine Tools and Manufacture 2010, 50 (8), 698–708.
  • Hadad, M.; Hadi, M. An investigation on surface grinding of hardened stainless steel S34700 and aluminum alloy AA6061 using minimum quantity of lubrication (MQL) technique. The International Journal of Advanced Manufacturing Technology 2013, 68 (9–12), 2145–2158.
  • Amrita, M.; Srikant, R.R.; Sitaramaraju, A.V. Performance evaluation of nanographite-based cutting fluid in machining process. The International Journal of Materials and Manufacturing Processes 2014, 29 (5), 600–605.
  • Lee, P.H.; Nam, J.S.; Li, C.J.; Lee, S.W. An experimental study on micro-grinding process with nanofluid minimum quantity lubrication (MQL). International Journal of Precision Engineering and Manufacturing 2012, 13 (3), 331–338.
  • Huang, X.M.; Ren, Y.H.; Jiang, Wei.; He, Z.J.; Deng, Z.H. Investigation on grind-hardening annealed AISI5140 steel with minimal quantity lubrication. The International Journal of Advanced Manufacturing Technology 2016. doi:10.1007/s00170-016-9142-y.
  • Mao, C.; Tang, X.J.; Zou, H.F.; Zhou, Z.X.; Yin, W.W. Experimental investigation of surface quality for minimum quantity oil-water lubrication grinding. The International Journal of Advanced Manufacturing Technology 2012, 59, 93–100.
  • Kamata, Y.; Obikawa, T.; Shinozuka, J. Analysis of mist flow in MQL cutting. Key Engineering Materials 2004, 257, 339–344.
  • An, Q.L.; Fu, Y.C.; Xu, J.H. The cooling effects of cryogenic pneumatic mist jet impinging in grinding of titanium alloy. Key Engineering Materials 2006, 304, 575–578.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.