453
Views
33
CrossRef citations to date
0
Altmetric
Original Articles

Development of cBN reinforced Ti6Al4V MMCs through laser sintering and process optimization

, , , , &
Pages 1667-1677 | Received 21 Oct 2016, Accepted 08 Feb 2017, Published online: 05 Apr 2017

References

  • Pagounis, E.; Lindroos, V.K. Processing and properties of particulate reinforced steel matrix composites. Materials Science and Engineering: A 1998, 246 (1), 221–234.
  • Katz, R.N.; Bracamonte, L.A.; Withers, J.C.; Chaudhury, S. Hybrid ceramic matrix/metal matrix composite gun barrels. Materials and Manufacturing Processes 2006, 21 (6), 579–583.
  • Riedel, Ralf. Handbook of Ceramic Hard Materials; Wiley-VCH Verlag GmbH: Weinheim, 2000. http://onlinelibrary.wiley.com/book/10.1002/9783527618217
  • Pagounis, E.; Lindroos, V.K. Processing and properties of particulate reinforced steel matrix composites. Materials Science and Engineering: A 1988, 246 (1), 221–234.
  • Bains, P.S.; Sidhu, S.S.; Payal, H.S. Fabrication and machining of metal matrix composites: A review. Materials and Manufacturing Processes 2016, 31 (5), 553–573.
  • Haldar, B.; Karmakar, S.; Saha, P.; Chattopadhyay, A.B. In situ multicomponent MMC coating developed on Ti–6Al–4V substrate. Surface Engineering 2014, 30 (4), 256–262.
  • Li, X., Luo, Y.; Wang, C. Preparation and characterization of porous Ti6Al4V/alginate hybrid implant by combination of electron beam melting and freeze-drying. Materials Letters 2012, 81, 23–26.
  • Li, X.; Wang, C.; Zhang, W.; Li, Y. Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process. Materials Letters 2009, 63 (3), 403–405.
  • Farayibi, P.K.; Folkes, J.A.; Clare, A.T. Laser deposition of Ti-6Al-4V wire with WC powder for functionally graded components. Materials and Manufacturing Processes 2013, 28 (5), 514–518.
  • Sun, Y. (). Thermally oxidised titanium coating on aluminium alloy for enhanced corrosion resistance. Materials Letters 2004, 58 (21), 2635–2639.
  • . Dong, H.; Bell, T. Enhanced wear resistance of titanium surfaces by a new thermal oxidation treatment. Wear 2000, 238 (2), 131–137.
  • Astarita, A.; Rubino, F.; Carlone, P.; Ruggiero, A., Leone; C. Genna, S.; Squillace, A. On the improvement of AA2024 wear properties through the deposition of a cold-sprayed titanium coating. Metals 2016, 6 (8), 185.
  • Zhang, S.; Wu, W.T.; Wang, M.C.; Man, H.C. In-situ synthesis and wear performance of TiC particle reinforced composite coating on alloy Ti6Al4V. Surface and Coatings Technology 2001, 138 (1), 95–100.
  • Song, B.; Dong, S.; Zhang B.; Liao, H.; Coddet, C. Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V. Materials & Design 2012, 35, 120–125.
  • Cárcel, B.; Serrano, A.; Zambrano, J.; Amigó, V.; Cárcel, A.C. Laser cladding of TiAl intermetallic alloy on Ti6Al4V-process optimization and properties. Physics Procedia 2014, 56, 284–293.
  • Shah, F.A.; Snis, A.; Matic, A.; Thomsen, P.; Palmquist, A. 3D printed Ti6Al4V implant surface promotes bone maturation and retains a higher density of less aged osteocytes at the bone-implant interface. Acta Biomaterialia 2016, 30, 357–367.
  • de Damborenea, J.J.; Larosa, M.A.; Arenas, M.A.; Hernández-López; J.M., Jardini, A.L.; Ierardi, M.C.F.; Conde, A. Functionalization of Ti6Al4V scaffolds produced by direct metal laser for biomedical applications. Materials & Design 2015, 83, 6–13.
  • Li, F.; Li, J.; Kou, H.; Zhou, L. Porous Ti6Al4V alloys with enhanced normalized fatigue strength for biomedical applications. Materials Science and Engineering: C 2016, 60, 485–488.
  • Salarian, A.A.; Hami, Z.; Mirzaie, N.; Mohseni, S.M.; Asadi, A.; Bahrami, H.; Zare, M.R. N-doped TiO 2 nanosheets for photocatalytic degradation and mineralization of diazinon under simulated solar irradiation: Optimization and modeling using a response surface methodology. Journal of Molecular Liquids 2016, 220, 183–191.
  • Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 4th Edition; John Wiley & Sons: Hoboken, NJ, 2016. http://as.wiley.com/WileyCDA/WileyTitle/productCd-1118916018.html
  • Singh, A.K.; Prakash, R.S. Simulation based two level factorial designed experiments for optimisation of selective laser sintering process. International Journal of Computer Aided Engineering and Technology 2009, 1 (3), 322–337.
  • Lenth, R.V. Response-surface methods in R, using rsm. Journal of Statistical Software 2009, 32 (7), 1–17.
  • Runa, M.J.; Mathew, M.T.; Rocha, L.A. Tribocorrosion response of the Ti6Al4V alloys commonly used in femoral stems. Tribology International 2013, 68, 85–93.
  • Ghosh, S.K.; Saha, P. Crack and wear behavior of SiC particulate reinforced aluminium based metal matrix composite fabricated by direct metal laser sintering process. Materials & Design 2011, 32 (1), 139–145.
  • Ashwath, P.; Anthony Xavior, M. Effect of ceramic reinforcements on microwave sintered metal matrix composites. Materials and Manufacturing Processes 2016, 1–6. http://www.tandfonline.com/doi/abs/10.1080/10426914.2016.1244851
  • Yao, Y.T.; Chen, L.Q. B4C/Al composites processed by metal-assisted pressureless infiltration technique and its characterization. Materials and Manufacturing Processes 2016, 31 (10), 1286–1291. http://www.tandfonline.com/doi/abs/10.1080/10426914.2016.1140192
  • Benko, E.; Stanisław, J.S.; Królicka, B.; Wyczesany, A.; Barr, T.L. cBN–TiN, cBN–TiC composites: Chemical equilibria, microstructure and hardness mechanical investigations. Diamond and Related Materials 1999, 8 (10), 1838–1846.
  • Ibrahim, K.A.; Wu, B.; Brandon, N.P. Electrical conductivity and porosity in stainless steel 316L scaffolds for electrochemical devices fabricated using selective laser sintering. Materials & Design 2016, 106, 51–59.
  • Ding, W.F.; Xu, J.H.; Shen, M.; Fu, Y.C.; Xiao, B. Thermodynamic and kinetic analysis of interfacial reaction between CBN and titanium activated Ag–Cu alloy. Materials Science and Technology 2006, 22 (1), 105–109.
  • Vieira, M.T.; Ramos, A.S.; Castanho, J.M.; Oliveira, J.C.; Cavaleiro, A. From Ti–Al-to Ti–Al–N-sputtered 2D materials. Journal of Materials Science 2007, 42 (22), 9145–9153.
  • Li, J.; Hu, K.; Zhou, Y. Formation of TiB 2/TiN nanocomposite powder by high energy ball milling and subsequent heat treatment. Materials Science and Engineering: A 2002, 326 (2), 270–275.
  • Du, H.L.; Datta, P.K.; Lewis, D.B.; Burnell-Gray, J.S. Air oxidation behaviour of Ti-6Al-4V alloy between 650 and 850°. Corrosion Science 1994, 36 (4), 631–642.
  • Audronis, M.; Kelly, P.J.; Arnell, R.D.; Leyland, A.; Matthews, A. The structure and properties of chromium diboride coatings deposited by pulsed magnetron sputtering of powder targets. Surface and Coatings Technology 2005, 200 (5), 1366–1371.
  • Li, J.; Chen, C.; Squartini, T.; He, Q. A study on wear resistance and microcrack of the Ti 3 Al/TiAl+TiC ceramic layer deposited by laser cladding on Ti–6Al–4V alloy. Applied Surface Science 2010, 257 (5), 1550–1555.
  • Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology: Process and Product Optimization using Designed Experiments, 3rd Edition; John Wiley & Sons: Hoboken, NJ, 2009. http://as.wiley.com/WileyCDA/WileyTitle/productCd-1119068606.html
  • Hunter, W.G.; Hunter, J.S. Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building; Wiley: New York, 1978; p. 319.
  • Cheshmeh, Darvishi; Soltani, R.; Rezaee, A.; Khataee, A.R.; Godini, H. Optimisation of the operational parameters during a biological nitrification process using response surface methodology. The Canadian Journal of Chemical Engineering 2014, 92 (1), 13–22.
  • Choi, J.P.; Lee, G.Y.; Song, J.I.; Lee, W.S.; Lee, J.S. Sintering behavior of 316L stainless steel micro–nanopowder compact fabricated by powder injection molding. Powder Technology 2015, 279, 196–202.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.