255
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Fabrication and experimental investigation of metal grid structure-reinforced aluminum foams

, , &
Pages 528-533 | Received 24 Dec 2016, Accepted 13 Jun 2017, Published online: 29 Aug 2017

References

  • Schwingel, D.; Seeliger, H.; Vecchionacci, C.; Alwes, D.; Dittrich, J. Aluminium Foam Sandwich Structures for Space Applications. Acta Astronaut. 2007, 61(1–6), 326–330. DOI:10.1016/j.actaastro.2007.01.022
  • Xiao, Z.; Fang, J.; Sun, G.; Li, Q. Crashworthiness Design for Functionally Graded Foam-Filled Bumper Beam. Adv. Eng. Softw. 2015, 85, 81–95. DOI:10.1016/j.advengsoft.2015.03.005
  • Banhart, J. Manufacture, Characterisation and Application of Cellular Metals and Metal Foams. Prog. Mater. Sci. 2001, 46(6), 559–632. DOI:10.1016/S0079-6425(00)00002-5
  • Xia, X.; Feng, H.; Zhang, X.; Zhao, W. The Compressive Properties of Closed-Cell Aluminum Foams with Different Mn Additions. Mater. Des. 2013, 51, 797–802. DOI:10.1016/j.matdes.2013.05.008
  • Huang, L.; Wang, H.; Yang, D.; Ye, F.; Lu, Z. P. Effects of Scandium Additions on Mechanical Properties of Cellular Al-Based Foams. Intermetallics 2012, 28, 71–76. DOI:10.1016/j.intermet.2012.03.050
  • Du, Y.; Li, A. B.; Zhang, X. X.; Tan, Z. B.; Su, R. Z.; Pu, F.; Geng, L. Enhancement of the Mechanical Strength of Aluminum Foams by SiC Nanoparticles. Mater. Lett. 2015, 148, 79–81. DOI:10.1016/j.matlet.2015.02.066
  • Daoud, A. Effect of Fly Ash Addition on the Structure and Compressive Properties of 4032-Fly Ash Particle Composite Foams. J. Alloys Compd. 2009, 487(1–2), 618–625. DOI:10.1016/j.jallcom.2009.08.026
  • Duarte, I.; Ventura, E.; Olhero, S.; Ferreira, J. M. A Novel Approach to Prepare Aluminium-Alloy Foams Reinforced by Carbon-Nanotubes. Mater. Lett. 2015, 160, 162–166. DOI:10.1016/j.matlet.2015.07.115
  • Szlancsik, A.; Katona, B.; Bobor, K.; Májlinger, K.; Orbulov, I. N. Compressive Behaviour of Aluminium Matrix Syntactic Foams Reinforced by Iron Hollow Spheres. Mater. Des. 2015, 83, 230–237. DOI:10.1016/j.matdes.2015.06.011
  • Alvandi-Tabrizi, Y.; Whisler, D. A.; Kim, H.; Rabiei, A. High Strain Rate Behavior of Composite Metal Foams. Mater. Sci. Eng. A 2015, 631, 248–257. DOI:10.1016/j.msea.2015.02.027
  • Chen, S. A Study on Properties of Novel Metallic Foam for Nuclear Applications; North Carolina State University, Raleigh, NC, 2015.
  • Guo, K.; Li, M.; Gong, Q.; Li, C.; Li, C.; Zhong, H.; Zhou, Y. Experimental Investigation on Steel Foams Fabricated by Sintering-Dissolution Process. Mater. Manuf. Processes 2016, 31(12), 1597–1602. DOI:10.1080/10426914.2015.1103852
  • Lin, H.; Luo, H.; Huang, W.; Zhang, X.; Yao, G. Diffusion Bonding in Fabrication of Aluminum Foam Sandwich Panels. J. Mater. Process. Technol. 2016, 230, 35–41. DOI:10.1016/j.jmatprotec.2015.10.034
  • Song, Y. F.; Xiao, L. R.; Zhao, X. J.; Zhou, H.; Zhang, W.; Guo, L.; Wang, Y. H. Fabrication, Microstructure and Shear Properties of Al Foam Sandwich. Mater. Manuf. Processes 2016, 31(8), 1046–1051. DOI:10.1080/10426914.2015.1037900
  • Duarte, I.; Krstulović-Opara, L.; Vesenjak, M. Characterisation of Aluminium Alloy Tubes Filled with Aluminium Alloy Integral-Skin foam Under Axial Compressive Loads. Compos. Struct. 2015, 121, 154–162. DOI:10.1016/j.compstruct.2014.11.003
  • Zu, G.; Song, B.; Zhong, Z.; Li, X.; Mu, Y.; Yao, G. Static Three-Point Bending Behavior of Aluminum Foam Sandwich. J. Alloys Compd. 2012, 540, 275–278. DOI:10.1016/j.jallcom.2012.06.079
  • Hou, W.; Zhu, F.; Lu, G.; Fang, D. Ballistic Impact Experiments of Metallic Sandwich Panels with Aluminium Foam Core. Int. J. Impact Eng. 2010, 37(10), 1045–1055. DOI:10.1016/j.ijimpeng.2010.03.006
  • Hamada, A. S.; Khosravifard, A.; Kisko, A. P.; Ahmed, E.; Porter, D. A. High Temperature Deformation Behavior of a Stainless Steel Fiber-Reinforced Copper Matrix Composite. Mater. Sci. Eng. A 2016, 669, 469–479. DOI:10.1016/j.msea.2016.03.084
  • Merzkirch, M.; Schulze, V.; Weidenmann, K. A. Lifetime Behaviour of Unidirectionally Wire Reinforced Lightweight Metal Matrix Composites. Int. J. Fatigue 2013, 56, 60–68. DOI:10.1016/j.ijfatigue.2013.08.002
  • Hufenbach, W.; Ullrich, H.; Gude, M.; Czulak, A.; Malczyk, P.; Geske, V. Manufacture Studies and Impact Behaviour of Light Metal Matrix Composites Reinforced by Steel Wires. Arch. Civ. Mech. Eng. 2012, 12(3), 265–272. DOI:10.1016/j.acme.2012.06.005
  • Szczepanik, S. Composites of Aluminium Alloy Matrix Reinforced by a Steel Mesh. Mater. Today 2015, 2, S9–S18. DOI:10.1016/j.matpr.2015.05.003
  • Rajak, D. K.; Kumaraswamidhas, L. A.; Das, S. Investigation and Characterisation of Aluminium Alloy Foams with TiH2 as a Foaming Agent. Mater. Sci. Technol. 2016, 32(13), 1338–1345. DOI:10.1080/02670836.2015.1123846
  • Sarajan, Z.; Soltani, M.; Kahani Khabushan, J. Foaming of Al-Si by TiH2. Mater. Manuf. Processes 2011, 26(10), 1293–1298. DOI:10.1080/10426914.2011.551964
  • Prashanth, K. G. Influence of Mechanical Activation on Decomposition of Titanium Hydride. Mater. Manuf. Processes 2010, 25(9), 974–977. DOI:10.1080/10426911003720870
  • Mandrino, D.; Paulin, I.; Škapin, S. D. Scanning Electron Microscopy, X-Ray Diffraction and Thermal Analysis Study of the TiH2 Foaming Agent. Mater. Charact. 2012, 72, 87–93. DOI:10.1016/j.matchar.2012.07.005
  • An, Y. K.; Yang, S. Y.; Zhao, E. T.; Zhou, H. A. Formation Mechanism and Three-Point Bending Behaviour of Directly Fabricated Aluminium Foam Plates. Mater. Sci. Technol. 2017, 33(4), 421–429. DOI:10.1080/02670836.2016.1221494
  • Sarajan, Z.; Sedigh, M. Influences of Titanium Hydride (TiH2) Content and Holding Temperature in Foamed Pure Aluminum. Mater. Manuf. Processes 2009, 24(5), 590–593. DOI:10.1080/10426910902748016
  • Koehler, S. A.; Hilgenfeldt, S.; Stone, H. A. Foam Drainage on the Microscale I. Modeling Flow Through Single Plateau Borders. J. Colloid Interface Sci. 2004, 276(2), 420–438. DOI:10.1016/j.jcis.2003.12.061
  • Stanzick, H.; Wichmann, M.; Weise, J.; Helfen, L.; Baumbach, T.; Banhart, J. Process Control in Aluminum Foam Production Using Real-Time X-Ray Radioscopy. Adv. Eng. Mater. 2002, 4(10), 814–823. DOI:10.1002/1527-2648(20021014)4:10<814::AID-ADEM814>3.0.CO;2-5
  • Bao, S.; Tang, K.; Kvithyld, A.; Engh, T.; Tangstad, M. Wetting of Pure Aluminium on Graphite, SiC and Al2O3 in Aluminium Filtration. Trans. Nonferrous Met. Soc. China 2012, 22(8), 1930–1938. DOI:10.1016/S1003-6326(11)61410-6
  • Raj, R. E.; Daniel, B.S. S. Aluminum Melt Foam Processing for Light-Weight Structures. Mater. Manuf. Processes 2007, 22(4), 525–530. DOI:10.1080/10426910701236072
  • Taherishargh, M.; Vesenjak, M.; Belova, I. V.; Krstulović-Opara, L.; Murch, G. E.; Fiedler, T. In Situ Manufacturing and Mechanical Properties of Syntactic Foam Filled Tubes. Mater. Des. 2016, 99, 356–368. DOI:10.1016/j.matdes.2016.03.077
  • Duarte, I.; Vesenjak, M.; Krstulovic-Opara, L.; Ren, Z. Static and Dynamic Axial Crush Performance of In-Situ Foam-Filled Tubes. Compos. Struct. 2015, 124, 128–139. DOI:10.1016/j.compstruct.2015.01.014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.