288
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Impact of induction hardened workpiece hardness on EDM performance

&
Pages 626-633 | Received 16 May 2017, Accepted 03 Jul 2017, Published online: 30 Aug 2017

References

  • Rudnev, V.; Totten, G. E. Principles of Induction Hardening and Inspection, ASM Hand Book, Vol. 4C. Induction Heating and Heat Treatment; Inductoheat, Inc.: Michigan, USA, 2014.
  • Danda, S. Effect of Induction Hardening on High Carbon Steel Forgings. Int. J. Soft Comput. Eng. 2011, 1, 15–18. ISSN: 2231-2307, Issue-NCRAMT2011.
  • Michael, J.; Schneider; Chatterjee, M. S. Introduction to Surface Hardening of Steels. ASM Handbook Steel Heat Treating Fundamentals and Processes; ASM International, USA, 2013, 4A.
  • Jomaa, W.; Songmene, V.; Bocher, P. An Investigation of Machining Induced Residual Stresses and Microstructure of Induction Hardened AISI 4340 Steel. Mater. Manuf. Processes 2015, 31, 838–844. DOI:10.1080/10426914.2015.1070431
  • Guo, Y. B.; Warren, A. W.; Hashimoto, F. The Basic Relationships Between Residual Stress, White Layer and Fatigue Life of Hard Turned and Ground Surfaces in Rolling Contact. CIRP J. Manuf. Sci. Technol. 2010, 2, 129–134. DOI:10.1016/j.cirpj.2009.12.002
  • Grum, J. A Review of the Influence of Grinding Conditions on Resulting Residual Stresses After Induction Surface Hardening and Grinding. J. Mater. Process. Technol. 2001, 114, 212–226. DOI:10.1016/s0924-0136(01)00562-3
  • Kunieda, M.; Lauwer, S.; Rajurkar, K. P.; Schumacher, B. M. Advancing EDM through Fundamental Insight into the Process. CIRP Ann. Manuf. Technol. 2005, 53, 64–87. DOI:10.1016/s0007-8506(07)60020-1
  • Ho, K. H.; Newman, S. T. State of the Art Electrical Discharge Machining (EDM). Int. J. Mach. Tools Manuf. 2003, 43, 1287–3000.
  • Abbas, N. M.; Solomon, D. G.; Bahari, F. A Review on Current Research Trends in Electrical Discharge Machining. Int. J. Mach. Tools Manuf. 2007, 47, 1214–1228. DOI:10.1016/j.ijmachtools.2006.08.026
  • Ramakrishnan, R. Multi Response Optimization of Wire EDM Operations using Robust Design of Experiments. Int. J. Adv. Manuf. Technol. 2006, 29, 105–112. DOI:10.1007/s00170-004-2496-6
  • Ugrasena, G.; Ravindra, H. V.; Prakash, G. V.; Keshavamurthy, R. Estimation of Machining Performances Using MRA, GMDH and Artificial Neural Network in Wire EDM of EN-31. Proc. Mater. Sci. 2014, 6, 1788–1797. DOI:10.1016/j.mspro.2014.07.209
  • Singh, H. Experimental Study of Distribution of Energy during EDM Process for Utilization in Thermal Models. Int. J. Heat Mass Transfer 2012, 55, 5053–5064. DOI:10.1016/j.ijheatmasstransfer.2012.05.004
  • Das, M. K.; Kumar, K.; Barman, T. K.; Sahoo, P. Optimization of MRR and Surface Roughness in PAC of EN 31Steel Using Weighted Principal Component Analysis. Proc. Mater. Sci. 2014, 6, 741–751.
  • Shankar, S.; Maheswari, S.; Pandey, P. C. Some Investigation into the Electric Discharge Machining of Hardened Tool Steel using Different Electrode Material. J. Mater. Process. Technol. 2004, 149, 272–277. DOI:10.1016/j.jmatprotec.2003.11.046
  • Dwivedi, A. P.; Choudhury, S. K. Effect of Tool Rotation on MRR, TWR and Surface Integrity of AISI-D3 Steel using the Rotary EDM Process. J. Mater. Manuf. Processes 2016, 31(14), 1844–1852. DOI:10.1080/10426914.2016.1140198
  • Murray, J.; Debski, D. Z.; Clare, A. T. Work Piece Debris Deposition on Tool Electrodes and Secondary Discharge Phenomena in Micro-EDM. J. Mater. Process. Technol. 2012, 212, 1537–1547. DOI:10.1016/j.jmatprotec.2012.02.019
  • Garzóna, M.; Adams, O.; Veselova, D.; Blattner, M.; Thiel, R.; Kirchheim, A. High Speed Micro Machining Process Analysis for Precision mfg. Proc. CIRP 2012, 1, 609–614. DOI:10.1016/j.procir.2012.05.008
  • Torres, A.; Puertas, I.; Luis, C. J. Modelling of Surface Finish, Electrode Wear and Material Removal Rate in Electrical Discharge Machining of Hard-To-Machine Alloys. Precis. Eng. 2015, 40, 33–45. DOI:10.1016/j.precisioneng.2014.10.001
  • Mohanty, P. C.; Mahapatra, S. S.; Singh, M. R. An Experimental Investigation of Machinability of Inconel 718in Electrical Discharge Machining. Proc. Mater. Sci. 2014, 6, 605–611. DOI:10.1016/j.mspro.2014.07.075
  • Vikas, K.; Shashikant, R.; Kumar, K. Effect and Optimization of Machine Process Parameters on MRR for EN-19 & EN-41 Materials Using Taguchi. Proc. Technol. 2014, 14, 204–210.
  • Reddy, S. B.; Rao, P. S.; Kumar, J. S., Reddy, K. V. K. Parametric Study of Electric Discharge Machining of AISI 304 Stainless Steel. Int. J. Eng. Sci. Technol. 2010, 2, 3535–3550.
  • Liu, Y.; Zhang, Y.; Ji, R.; Cai, B.; Wang, F.; Tian, X.; Dong, X. Experimental Characterization of Sinking Electrical Discharge Machining Using Water in Oil Emulsion as Dielectric. Mater. Manuf. Processes 2013, 28, 355–361.
  • Rahang, M.; Patowari, P. K. Parametric Optimization for Selective Surface Modification in EDM Using Taguchi Analysis. Mater. Manuf. Processes 2016, 31(4), 422–431. DOI:10.1080/10426914.2015.1037921
  • Bozdana, A. T.; Ulutas, T. The Effectiveness of Multi-Channel Electrodes on Drilling Blind Holes on Inconel 718 by EDM Process. Mater. Manuf. Processes, 2016, 31(4), 504–513. DOI:10.1080/10426914.2015.1059451
  • Gill, A. S.; Kumar, S. Surface Roughness and Micro Hardness Evaluation for EDM with Cu–Mn Powder Metallurgy Tool. Mater. Manuf. Processes 2016, 31(4), 514–521. DOI:10.1080/10426914.2015.1070412
  • Xuyang, C.; Kai, Z.; Chunmei, W.; Zhipeng, H.; Yiru, Z. A Study on Plasma Channel Expansion in Micro-EDM. Mater. Manuf. Processes 2016, 31(4), 381–390. DOI:10.1080/10426914.2015.1059445
  • Dhar, S.; Purohit, R.; Saini, N.; Sharma, A.; Kumar, G. H. Mathematical Modelling of Electric Discharge Machining of Cast Al-4Cu-6Si alloy-10 wt.% SiCp Composites. J. Mater. Process. Technol. 2007, 194, 24–29. DOI:10.1016/j.jmatprotec.2007.03.121
  • Wang, F.; Yonghong, L.; Yang, S.; Renjie, J.; Zemin, T.; Yanzhen, Z. Machining Performance of Inconel 718 Using High Current Density Electrical Discharge Milling. Mater. Manuf. Processes 2013, 28(10), 1147–1152. DOI:10.1080/10426914.2013.822985
  • Lin, Y. C.; Cheng, C. H.; Su, B. L.; Hwang, L. R. Machining Characteristics and Optimization of Machining Parameters of SKH 57 High-Speed Steel Using Electrical-Discharge Machining Based on Taguchi Method. Mater. Manuf. Processes 2006, 21, 922–929. DOI:10.1080/03602550600728133
  • Rajmohan, T.; Prabhu, R.; Subba, R. G.; Palanikumar, K. Optimization of Machining Parameters in Electrical Discharge Machining (EDM) of 304 Stainless Steel. Proc. Eng. 2012, 38, 1030–1036. DOI:10.1016/j.proeng.2012.06.129
  • Kumar, A.; Singh, B. K.; Singh, D. K.; Singh, R. Experimental Investigation of Machine Parameters for EDM Using U Shaped Electrode of EN-19 Tool Steel. Int. J. Eng. Res. Appl. 2015, 1, 1674–1684.
  • Nirala, C. K.; Saha, P. A. New Approach of Tool Wear Monitoring and Compensation in RμEDM Process. Mater. Manuf. Processes 2016, 31(4), 483–494. DOI:10.1080/10426914.2015.1058950
  • Li, L.; Li, Z. Y.; Wei, X. T.; Cheng, X. Machining Characteristics of Inconel 718 by Sinking-EDM and Wire-EDM. Mater. Manuf. Processes 2015, 30(8), 968–973. DOI:10.1080/10426914.2014.973579
  • Dhakar, K.; Dvivedi, A. Parametric Evaluation on Near-Dry Electric Discharge Machining. Mater. Manuf. Processes 2016, 31(4), 413–422.
  • Sivaraj, M.; Selvakumar, N. Experimental Analysis of Al–TiC Sintered Nanocomposite on EDM Process Parameters Using ANOVA. Mater. Manuf. Processes 2016, 31(6), 802–812. DOI:10.1080/10426914.2015.1048471
  • Behroozfar, A.; Mohammad, R. R. Experimental Study of the Tool Wear During the Electrochemical Discharge Machining. Mater. Manuf. Processes 2016, 31(5), 574–581.
  • Xuyang, C.; Kai, Z.; Chunmei, W.; Zhipeng, H.; Yiru, Z. A Study on Plasma Channel Expansion in Micro-EDM. Mater. Manuf. Processes 2016, 31(4), 381–390. DOI:10.1080/10426914.2015.1059445
  • Marafona, J. D.; Araújo, A. Influence of Work Piece Hardness on EDM Performance. Int. J. Mach. Tools Manuf. 2009, 49(9), 744–748. DOI:10.1016/j.ijmachtools.2009.03.002
  • Montgomery, D. C. Design and Analysis of Experiments, 8th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, 2014; 344 p.
  • Marafona, J.D. Black layer affects the thermal conductivity of the surface of copper tungsten – electrode. Int. J. Adv. Manuf. Technol. 2009, 42, 482–488. DOI:10.1007/s00170008-1613-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.