2,721
Views
133
CrossRef citations to date
0
Altmetric
Reviews

Multiple-jet electrospinning methods for nanofiber processing: A review

ORCID Icon, , &
Pages 479-498 | Received 23 Mar 2017, Accepted 13 Sep 2017, Published online: 26 Oct 2017

References

  • Bu, N.; Huang, Y.; Wang, X.; Yin, Z. Continuously Tunable and Oriented Nanofiber Direct-Written by Mechano-Electrospinning. Mater. Manuf. Process. 2012, 27(12), 1318–1323. DOI: 10.1080/10426914.2012.700145.
  • Irawati, N.; Suthaskumar, M.; John, V.; Ali, N. M.; Ahmad, H.; Harun, S. W. Fabrication of Polymer Microfiber by Direct Drawing. Microwave Opt. Technol. Lett. 2015, 57(4), 820–823. DOI: 10.1002/mop.28967.
  • Shi, G.; Li, J.; Sang, X.; Wang, L.; Ni, C.; Li, Y. Micro-Nano Fabrication of Hierarchical PPy/TiO2/Si by Continuous Self-Assembly Technology. Mater. Manuf. Process. 2017, 1–5. DOI: 10.1080/10426914.2017.1303158.
  • Liao, H.-S.; Lin, J.; Liu, Y.; Huang, P.; Jin, A.; Chen, X. Self-Assembly Mechanisms of Nanofibers from Peptide Amphiphiles in Solution and on Substrate Surfaces. Nanoscale 2016, 8(31), 14814–14820. DOI: 10.1039/C6NR04672J.
  • Lv, H.; Liu, S. Preparation and Analysis of Porous Anodic Alumina Template on Silicon Substrate. Mater. Manuf. Process. 2016, 31(2), 157–161. DOI: 10.1080/10426914.2015.1019107.
  • Wang, H.; Deng, J.; Chen, Y.; Xu, F.; Wei, Z.; Wang, Y. Hydrothermal Synthesis of Manganese Oxide Encapsulated Multiporous Carbon Nanofibers for Supercapacitors. Nano Res. 2016, 9(9), 2672–2680. DOI: 10.1007/s12274-016-1154-2.
  • Li, L.; Ge, J.; Wang, L.; Guo, B.; Ma, P. X. Electroactive Nanofibrous Biomimetic Scaffolds by Thermally Induced Phase Separation. J. Mater. Chem. B 2014, 2(36), 6119–6130. DOI: 10.1039/C4TB00493K.
  • Kim, J. F.; Kim, J. H.; Lee, Y. M.; Drioli, E. Thermally Induced Phase Separation and Electrospinning Methods for Emerging Membrane Applications: A Review. AICHE J. 2016, 62(2), 461–490. DOI: 10.1002/aic.15076.
  • Nayak, R.; Kyratzis, I. L.; Truong, Y. B.; Padhye, R.; Arnold, L. Structural and Mechanical Properties of Polypropylene Nanofibres Fabricated by Meltblowing. J. Text. Inst. 2015, 106(6), 629–640. DOI: 10.1080/00405000.2014.933512.
  • Yesil, Y.; Bhat, G. S. Porosity and Barrier Properties of Polyethylene Meltblown Nonwovens. J. Text. Inst. 2017, 108(6), 1035–1040. DOI: 10.1080/00405000.2016.1218109.
  • Li, J.; Wang, D.; Liu, H.; Zhu, Z. Multilayered Mo-Doped TiO2 Nanofibers and Enhanced Photocatalytic Activity. Mater. Manuf. Process. 2012, 27(6), 631–635. DOI: 10.1080/10426914.2011.593248.
  • Mousavi-Kamazani, M.; Mohandes, F.; Salavati-Niasari, M. Hydrothermal Synthesis of AgInS2@Ag2S Nanocomposites by using Ag-Carminic Acid Nanofibers as a Novel Precursor. J. Mater. Sci. Mater. Electron. 2015, 26(11), 8336–8340. DOI: 10.1007/s10854-015-3499-9.
  • Liu, H.-Y.; Chen, Y.; Liu, G.-S.; Pei, S.-G.; Liu, J.-Q.; Ji, H.; Wang, R. D. Preparation of High-Quality Zirconia Fibers by Super-High Rotational Centrifugal Spinning of Inorganic Sol. Mater. Manuf. Process. 2013, 28(2), 133–138. DOI: 10.1080/10426914.2012.746786.
  • Yanilmaz, M.; Zhang, X. Polymethylmethacrylate/Polyacrylonitrile Membranes via Centrifugal Spinning as Separator in Li-Ion Batteries. Polymers 2015, 7(4), 629–643. DOI: 10.3390/polym7040629.
  • Doshi, J.; Reneker, D. H. Electrospinning Process and Applications of Electrospun Fibers. J. Electrostat. 1995, 35(2–3), 151–160. DOI: 10.1016/0304-3886(95)00041-8.
  • Keskin, S.; Uslu, İ.; Tunç, T.; Öztürk, M.; Aytimur, A. Preparation and Characterization of Neodymia Doped PVA/Zr-Ce Oxide Nanocrystalline Composites via Electrospinning Technique. Mater. Manuf. Process. 2011, 26(11), 1346–1351. DOI: 10.1080/10426914.2011.551954.
  • Tański, T.; Matysiak, W.; Krzemiński, Ł. Analysis of Optical Properties of TiO2 Nanoparticles and PAN/TiO2 Composite Nanofibers. Mater. Manuf. Process. 2016, 32(11), 1218–1224. DOI: 10.1080/10426914.2016.1257129.
  • Huang, Z.-X.; Wu, J.-W.; Wong, S.-C.; Qu, J.-P.; Srivatsan, T. S. The Technique of Electrospinning for Manufacturing Core–Shell Nanofibers. Mater. Manuf. Process. 2017, 1–18. DOI: 10.1080/10426914.2017.1303144.
  • Zanjani, J. S. M.; Saner Okan, B.; Menceloglu, Y. Z.; Yildiz, M. Design and Fabrication of Multi-Walled Hollow Nanofibers by Triaxial Electrospinning as Reinforcing Agents in Nanocomposites. J. Reinf. Plast. Compos. 2015, 34(16), 1273–1286. DOI: 10.1177/0731684415573980.
  • Wang, B.; Wang, Y.; Lei, Y.; Wu, N.; Gou, Y.; Han, C. Tailoring of Porous Structure in Macro-Meso-Microporous SiC Ultrathin Fibers via Electrospinning Combined with Polymer-Derived Ceramics Route. Mater. Manuf. Process. 2016, 31(10), 1357–1365. DOI: 10.1080/10426914.2015.1090601.
  • Zafar, M.; Najeeb, S.; Khurshid, Z.; Vazirzadeh, M.; Zohaib, S.; Najeeb, B.; Sefat, F. Potential of Electrospun Nanofibers for Biomedical and Dental Applications. Materials 2016, 9(2), 73. DOI: 10.3390/ma9020073.
  • Aleksandrova, T. P.; Vais, A. A.; Masliy, A. I.; Burmistrov, V. A.; Gusev, A. A.; Bagavieva, S. K. Synthetic Fibers with Silver-Containing Coatings and Their Antimicrobial Properties. Mater. Manuf. Process. 2015, 30(6), 798–803. DOI: 10.1080/10426914.2015.1004712.
  • Serbezeanu, D.; Popa, A. M.; Stelzig, T.; Sava, I.; Rossi, R. M.; Fortunato, G. Preparation and Characterization of Thermally Stable Polyimide Membranes by Electrospinning for Protective Clothing Applications. Text. Res. J. 2015, 85(17), 1763–1775. DOI: 10.1177/0040517515576326.
  • Bishop-Haynes, A.; Gouma, P. Electrospun Polyaniline Composites for NO2 Detection. Mater. Manuf. Process. 2007, 22(6), 764–767. DOI: 10.1080/10426910701385408.
  • Azmer, M. I.; Zafar, Q.; Ahmad, Z.; Sulaiman, K. Humidity Sensor Based on Electrospun MEH-PPV:PVP Microstructured Composite. RSC Adv. 2016, 6(42), 35387–35393. DOI: 10.1039/C6RA03628G.
  • Kim, J.-H.; Kim, K.-P.; Kim, D.-H.; Hwang, D.-K. Electrospun ZnO Nanofibers as a Photoelectrode in Dye-Sensitized Solar Cells. J. Nanosci. Nanotechnol. 2015, 15(3), 2346–2350. DOI: 10.1166/jnn.2015.10256.
  • Taylor, G. Electrically Driven Jets. Proc. R. Soc. A: Math., Phys. Eng. Sci. 1969, 313(1515), 453–475. DOI: 10.1098/rspa.1969.0205.
  • Teo, W. E.; Ramakrishna, S. A Review on Electrospinning Design and Nanofibre Assemblies. Nanotechnology 2006, 17(14), R89–R106. DOI: 10.1088/0957-4484/17/14/R01.
  • Garg, K.; Bowlin, G. L. Electrospinning Jets and Nanofibrous Structures. Biomicrofluidics 2011, 5, 13403. DOI: 10.1063/1.3567097.
  • Jones, W. Earnshaw’s Theorem and the Stability of Matter. Eur. J. Phys. 2000, 1(2), 85–88. DOI: 10.1088/0143-0807/1/2/004.
  • Liu, L.; Dzenis, Y. Simulation of Electrospun Nanofibre Deposition on Stationary and Moving Substrates. Micro Nano Lett. 2011, 6(6), 408–411. DOI: 10.1049/mnl.2011.0167.
  • Thompson, C. J.; Chase, G. G.; Yarin, A. L.; Reneker, D. H. Effects of Parameters on Nanofiber Diameter Determined from Electrospinning Model. Polymer 2007, 48(23), 6913–6922. DOI: 10.1016/j.polymer.2007.09.017.
  • Sundaray, B.; Subramanian, V.; Natarajan, T. S.; Xiang, R.-Z.; Chang, C.-C.; Fann, W.-S. Electrospinning of Continuous Aligned Polymer Fibers. Appl. Phys. Lett. 2004, 84(7), 1222–1224. DOI: 10.1063/1.1647685.
  • Wu, X.; Wang, L.; Yu, H.; Huang, Y. Effect of Solvent on Morphology of Electrospinning Ethyl Cellulose Fibers. J. Appl. Polym. Sci. 2005, 97(3), 1292–1297. DOI: 10.1002/app.21818.
  • Rodoplu, D.; Mutlu, M. Effects of Electrospinning Setup and Process Parameters on Nanofiber Morphology Intended for the Modification of Quartz Crystal Microbalance Surfaces. J. Eng. Fibers Fabr. 2012, 7(2), 118–123.
  • Katti, D. S.; Robinson, K. W.; Ko, F. K.; Laurencin, C. T. Bioresorbable Nanofiber-Based Systems for Wound Healing and Drug Delivery: Optimization of Fabrication Parameters. J. Biomed. Mater. Res. B 2004, 70B(2), 286–296. DOI: 10.1002/jbm.b.30041.
  • Megelski, S.; Stephens, J. S.; Chase, D. B.; Rabolt, J. F. Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers. Macromolecules 2002, 35(22), 8456–8466. DOI: 10.1021/ma020444a.
  • Heikkilä, P.; Söderlund, L.; Uusimäki, J.; Kettunen, L.; Harlin, A. Exploitation of Electric Field in Controlling of Nanofiber Spinning Process. Polym. Eng. Sci. 2007, 47(12), 2065–2074. DOI: 10.1002/pen.20923.
  • Li, Q.; Jia, Z.; Yang, Y.; Wang, L.; Guan, Z. Preparation and Properties of Poly(vinyl alcohol) Nanofibers by Electrospinning. IEEE International Conference on Solid Dielectrics, Winchester, UK, July 2007, pp 215–218. DOI: 10.1109/ICSD.2007.4290790.
  • Matabola, K. P.; Moutloali, R. M. The Influence of Electrospinning Parameters on the Morphology and Diameter of Poly(vinyledene fluoride) Nanofibers-Effect of Sodium Chloride. J. Mater. Sci. 2013, 48(16), 5475–5482. DOI: 10.1007/s10853-013-7341-6.
  • Wang, T.; Kumar, S. Electrospinning of Polyacrylonitrile Nanofibers. J. Appl. Polym. Sci. 2006, 102(2), 1023–1029. DOI: 10.1002/app.24123.
  • Şener, A. G.; Altay, A. S.; Altay, F. Effect of Voltage on Morphology of Electrospun Nanofibers. 7th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, December 2011, pp. I324–I328.
  • Tang, X.-P.; Si, N.; Xu, L.; Liu, H.-Y. Effect of Flow Rate on Diameter of Electrospun Nanoporous Fibers. Thermal Sci. 2014, 18(5), 1447–1449. DOI: 10.2298/TSCI1405447T.
  • Ghelich, R.; Rad, M. K.; Youzbashi, A. A. Study on Morphology and Size Distribution of Electrospun NiO-GDC Composite Nanofibers. J. Eng. Fibers Fabr. 2015, 10(1), 12–19.
  • De Schoenmaker, B.; Van der Schueren, L.; Ceylan, Ö.; De Clerck, K. Electrospun Polyamide 4.6 Nanofibrous Nonwovens: Parameter Study and Characterization. J. Nanomater. 2012, 2012, 860654. DOI: 10.1155/2012/860654.
  • Barua, B.; Saha, M. C. Investigation on Jet Stability, Fiber Diameter, and Tensile Properties of Electrospun Polyacrylonitrile Nanofibrous Yarns. J. Appl. Polym. Sci. 2015, 132(18), 41918. DOI: 10.1002/app.41918.
  • Zargham, S.; Bazgir, S.; Tavakoli, A.; Rashidi, A. S.; Damerchely, R. The Effect of Flow Rate on Morphology and Deposition Area of Electrospun Nylon 6 Nanofiber. J. Eng. Fibers Fabr. 2012, 7(4), 42–49.
  • Tong, H.-W.; Wang, M. Electrospinning of Fibrous Polymer Scaffolds Using Positive Voltage or Negative Voltage: A Comparative Study. Biomed. Mater. 2010, 5(5), 54110. DOI: 10.1088/1748-6041/5/5/054110.
  • Abdel-Hady, F.; Alzahrany, A.; Hamed, M. Experimental Validation of Upward Electrospinning Process. ISRN Nanotechnol. 2011, 2011, 851317.
  • Hekmati, A. H.; Rashidi, A.; Ghazisaeidi, R.; Drean, J.-Y. Effect of Needle Length, Electrospinning Distance, and Solution Concentration on Morphological Properties of Polyamide-6 Electrospun Nanowebs. Text. Res. J. 2013, 83(14), 1452–1466. DOI: 10.1177/0040517512471746.
  • Zhang, C.; Yuan, X.; Wu, L.; Han, Y.; Sheng, J. Study on Morphology of Electrospun Poly(vinyl alcohol) Mats. Eur. Polym. J. 2005, 41(3), 423–432. DOI: 10.1016/j.eurpolymj.2004.10.027.
  • Kizildag, N.; Beceren, Y.; Kazanci, M.; Cukul, D. Effect of Needle Diameter on Diameter of Electrospun Silk Fibroin Nanofibers. RMUTP International Conference: Textiles and Fashion, Bangkok, Thailand, July 2012.
  • Wang, C.; Chien, H.-S.; Hsu, C.-H.; Wang, Y.-C.; Wang, C.-T.; Lu, H.-A. Electrospinning of Polyacrylonitrile Solutions at Elevated Temperatures. Macromolecules 2007, 40(22), 7973–7983. DOI: 10.1021/ma070508n.
  • Biber, E.; Gündüz, G.; Mavis, B.; Colak, U. Effects of Electrospinning Process Parameters on Nanofibers Obtained from Nylon 6 and Poly(ethylene-N-butyl acrylate-maleic anhydride) Elastomer Blends Using Johnson SB Statistical Distribution Function. Appl. Phys. A 2010, 99(2), 477–487. DOI: 10.1007/s00339-010-5559-6.
  • Costa, L. M. M.; Bretas, R. E. S.; Gregorio, R. Effect of Solution Concentration on the Electrospray/Electrospinning Transition and on the Crystalline Phase of PVDF. Mater. Sci. Appl. 2010, 1(4), 247–252. DOI: 10.4236/msa.2010.14036.
  • Huan, S.; Liu, G.; Han, G.; Cheng, W.; Fu, Z.; Wu, Q.; Wang, Q. Effect of Experimental Parameters on Morphological, Mechanical and Hydrophobic Properties of Electrospun Polystyrene Fibers. Materials 2015, 8(5), 2718–2734. DOI: 10.3390/ma8052718.
  • Jacobs, V.; Anandjiwala, R. D.; Maaza, M. The Influence of Electrospinning Parameters on the Structural Morphology and Diameter of Electrospun Nanofibers. J. Appl. Polym. Sci. 2010, 115(5), 3130–3136. DOI: 10.1002/app.31396.
  • Demir, M.; Yilgor, I.; Yilgor, E.; Erman, B. Electrospinning of Polyurethane Fibers. Polymer 2002, 43(11), 3303–3309. DOI: 10.1016/S0032-3861(02)00136-2.
  • Ding, B.; Kim, H.-Y.; Lee, S.-C.; Lee, D.-R.; Choi, K.-J. Preparation and Characterization of Nanoscaled Poly(vinyl alcohol) Fibers via Electrospinning. Fibers Polym. 2002, 3(2), 73–79. DOI: 10.1007/BF02875403.
  • Qin, X.-H.; Yang, E.-L.; Li, N.; Wang, S.-Y. Effect of Different Salts on Electrospinning of Polyacrylonitrile (PAN) Polymer Solution. J. Appl. Polym. Sci. 2007, 103(6), 3865–3870. DOI: 10.1002/app.25498.
  • Zheng, J.-Y.; Zhuang, M.-F.; Yu, Z.-J.; Zheng, G.-F.; Zhao, Y.; Wang, H.; Sun, D. H. The Effect of Surfactants on the Diameter and Morphology of Electrospun Ultrafine Nanofiber. J. Nanomater. 2014, 2014, 689298. DOI: 10.1155/2014/689298.
  • Xin, Y.; Reneker, D. H. Garland Formation Process in Electrospinning. Polymer 2012, 53(16), 3629–3635. DOI: 10.1016/j.polymer.2012.05.060.
  • De Vrieze, S.; Van Camp, T.; Nelvig, A.; Hagström, B.; Westbroek, P.; De Clerck, K. The Effect of Temperature and Humidity on Electrospinning. J. Mater. Sci. 2009, 44(5), 1357–1362. DOI: 10.1007/s10853-008-3010-6.
  • Krishnamoorthy, T.; Tang, M. Z.; Verma, A.; Nair, A. S.; Pliszka, D.; Mhaisalkar, S. G.; Ramakrishna, S. A Facile Route to Vertically Aligned Electrospun SnO2 Nanowires on a Transparent Conducting Oxide Substrate for Dye-Sensitized Solar Cells. J. Mater. Chem. 2012, 22(5), 2166–2172. DOI: 10.1039/C1JM15047B.
  • Kim, I. G.; Lee, J.-H.; Unnithan, A. R.; Park, C.-H.; Kim, C. S. A Comprehensive Electric Field Analysis of Cylinder-Type Multi-Nozzle Electrospinning System for Mass Production of Nanofibers. J. Ind. Eng. Chem. 2015, 31, 251–256. DOI: 10.1016/j.jiec.2015.06.033.
  • Park, C. H.; Pant, H. R.; Kim, C. S. Novel Robot-Assisted Angled Multi-Nozzle Electrospinning Set-Up: Computer Simulation with Experimental Observation of Electric Field and Fiber Morphology. Text. Res. J. 2014, 84(10), 1044–1058. DOI: 10.1177/0040517513517961.
  • Wang, H.; Huang, S.; Liang, F.; Wu, P.; Li, M.; Lin, S.; Chen, X. Research on Multinozzle Near-Field Electrospinning Patterned Deposition. J. Nanomater. 2015, 2015, 529138. DOI: 10.1155/2015/529138.
  • Varesano, A.; Rombaldoni, F.; Mazzuchetti, G.; Tonin, C.; Comotto, R. Multi-Jet Nozzle Electrospinning on Textile Substrates: Observations on Process and Nanofibre Mat Deposition. Polym. Int. 2010, 59(12), 1606–1615. DOI: 10.1002/pi.2893.
  • Theron, S. A.; Yarin, A. L.; Zussman, E.; Kroll, E. Multiple Jets in Electrospinning: Experiment and Modeling. Polymer 2005, 46(9), 2889–2899. DOI: 10.1016/j.polymer.2005.01.054.
  • Yang, Y.; Jia, Z.; Li, Q.; Hou, L.; Liu, J.; Wang, L.; Guan, Z.; Zahn, M. A Shield Ring Enhanced Equilateral Hexagon Distributed Multi-Needle Electrospinning Spinneret. IEEE Trans. Dielectr. Electr. Insul. 2010, 17(5), 1592–1601. DOI: 10.1109/TDEI.2010.5595562.
  • Tomaszewski, W.; Szadkowski, M. Investigation of Electrospinning with the Use of a Multi-Jet Electrospinning Head. Fibres Text. East. Eur. 2005, 13(4), 22–26.
  • Yang, Y.; Jia, Z.; Li, Q.; Hou, L.; Gao, H.; Wang, L.; Guan, Z. Multiple Jets in Electrospinning. IEEE 8th International Conference on Properties and Applications of Dielectric Materials, Bali, Indonesia, June 2006, pp 940–943. DOI: 10.1109/ICPADM.2006.284332.
  • Guclu, S.; Pasaoglu, M. E.; Koyuncu, I. Membrane Manufacturing via Simultaneous Electrospinning of PAN and PSU Solutions. Desalin. Water Treat. 2016, 57(18), 8152–8160. DOI: 10.1080/19443994.2015.1024747.
  • Wang, S.; Yang, Y.; Zhang, Y.; Fei, X.; Zhou, C.; Zhang, Y.; Li, Y.; Yang, Q.; Song, Y. Fabrication of Large-Scale Superhydrophobic Composite Films with Enhanced Tensile Properties by Multinozzle Conveyor Belt Electrospinning. J. Appl. Polym. Sci. 2014, 131, 39735. DOI: 10.1002/app.39735.
  • Huang, Y.-Y.; Wang, D.-Y.; Chang, L.-L.; Yang, Y.-C. Fabricating Microparticles/Nanofibers Composite and Nanofiber Scaffold with Controllable Pore Size by Rotating Multichannel Electrospinning. J. Biomater. Sci., Polym. Ed. 2010, 21(11), 1503–1514. DOI: 10.1163/092050609x12519805625997.
  • Dabirian, F.; Hosseini, S. A. Novel Method for Nanofibre Yarn Production Using Two Differently Charged Nozzles. Fibres Text. East. Eur. 2009, 17(3), 45–47.
  • Moradipour, P.; Dabirian, F.; Rajabi, L.; Derakhshan, A. A. Fabrication and Characterization of New Bulky Layer Mixed Metal Oxide Ceramic Nanofibers Through Two Nozzle Electrospinning Method. Ceram. Int. 2016, 42(12), 13449–13458. DOI: 10.1016/j.ceramint.2016.05.132.
  • Nurfaizey, A. H.; Stanger, J.; Tucker, N.; Buunk, N.; Wood, A. R.; Staiger, M. P. Control of Spatial Deposition of Electrospun Fiber Using Electric Field Manipulation. J. Eng. Fibers Fabr. 2014, 9, 155–164.
  • Badieyan, S. S.; Janmaleki, M. Nanofiber Formation in the Presence of an External Magnetic Field in Electrospinning. J. Polym. Eng. 2015, 35(6), 587–596. DOI: 10.1515/polyeng-2014-0297.
  • Zhu, Z.; Chen, X.; Du, Z.; Huang, S.; Peng, D.; Zheng, J.; Wang, H. Fabricated Wavy Micro/Nanofiber via Auxiliary Electrodes in Near-Field Electrospinning. Mater. Manuf. Process. 2016, 31(6), 707–712. DOI: 10.1080/10426914.2015.1048464.
  • Arras, M. M. L.; Grasl, C.; Bergmeister, H.; Schima, H. Electrospinning of Aligned Fibers with Adjustable Orientation Using Auxiliary Electrodes. Sci. Technol. Adv. Mater. 2012, 13(3), 35008. DOI: 10.1088/1468-6996/13/3/035008.
  • Huang, W.; Jiang, L.; Luo, J.; Chen, Z.; Ren, L.; Li, C. Effect of Magnetic Field on Stability of Jet Motion in Electrospinning. Mater. Manuf. Process. 2016, 31(12), 1603–1607. DOI: 10.1080/10426914.2015.1103858.
  • Kim, G. H.; Han, H.; Park, J. H.; Kim, W. D. An Applicable Electrospinning Process for Fabricating a Mechanically Improved Nanofiber Mat. Polym. Eng. Sci. 2007, 47(5), 707–712. DOI: 10.1002/pen.20744.
  • Kim, G.; Cho, Y.-S.; Kim, W. D. Stability Analysis for Multi-Jets Electrospinning Process Modified with a Cylindrical Electrode. Eur. Polym. J. 2006, 42(9), 2031–2038. DOI: 10.1016/j.eurpolymj.2006.01.026.
  • Xie, S.; Zeng, Y. Effects of Electric Field on Multineedle Electrospinning: Experiment and Simulation Study. Ind. Eng. Chem. Res. 2012, 51(14), 5336–5345. DOI: 10.1021/ie2020763.
  • Zhu, W.; Shi, J.; Huang, Z.; Yu, P.; Yang, E. Electric Field Simulation of Electrospinning with Auxiliary Electrode. Commun. Comp. Inf. Sci. 2011, 228(5), 346–351. DOI: 10.1007/978-3-642-23223-7_44.
  • Srivastava, Y.; Marquez, M.; Thorsen, T. Multijet Electrospinning of Conducting Nanofibers from Microfluidic Manifolds. J. Appl. Polym. Sci. 2007, 106(5), 3171–3178. DOI: 10.1002/app.26810.
  • Varabhas, J. S.; Chase, G. G.; Reneker, D. H. Electrospun Nanofibers from a Porous Hollow Tube. Polymer 2008, 49(19), 4226–4229. DOI: 10.1016/j.polymer.2008.07.043.
  • Zhou, F.-L.; Gong, R.-H.; Porat, I. Polymeric Nanofibers via Flat Spinneret Electrospinning. Polym. Eng. Sci. 2009, 49(12), 2475–2481. DOI: 10.1002/pen.21498.
  • Zheng, Y.; Zeng, Y. Electric Field Analysis of Spinneret Design for Multihole Electrospinning System. J. Mater. Sci. 2014, 49(5), 1964–1972. DOI: 10.1007/s10853-013-7882-8.
  • Zheng, Y.; Xie, S.; Zeng, Y. Electric Field Distribution and Jet Motion in Electrospinning Process: From Needle to Hole. J. Mater. Sci. 2013, 48(19), 6647–6655. DOI: 10.1007/s10853-013-7465-8.
  • Zheng, Y.; Gong, R. H.; Zeng, Y. Multijet Motion and Deviation in Electrospinning. RSC Adv. 2015, 5(60), 48533–48540. DOI: 10.1039/c5ra06049d.
  • Sarkar, K.; Gomez, C.; Zambrano, S.; Ramirez, M.; de Hoyos, E.; Vasquez, H.; Lozano, K. Electrospinning to Forcespinning™. Mater. Today 2010, 13(11), 12–14. DOI: 10.1016/S1369-7021(10)70199-1.
  • Peng, H.; Liu, Y.; Ramakrishna, S. Recent Development of Centrifugal Electrospinning. J. Appl. Polym. Sci. 2017, 134(10), 44578. DOI: 10.1002/app.44578.
  • Liu, S.-L.; Long, Y.-Z.; Zhang, Z.-H.; Zhang, H.-D.; Sun, B.; Zhang, J.-C.; Han, W. P. Assembly of Oriented Ultrafine Polymer Fibers by Centrifugal Electrospinning. J. Nanomater. 2013, 2013, 713275. DOI: 10.1155/2013/713275.
  • Kancheva, M.; Toncheva, A.; Manolova, N.; Rashkov, I. Advanced Centrifugal Electrospinning Setup. Mater. Lett. 2014, 136, 150–152. DOI: 10.1016/j.matlet.2014.08.045.
  • Nayak, R.; Padhye, R.; Kyratzis, I. L.; Truong, Y. B.; Arnold, L. Recent Advances in Nanofibre Fabrication Techniques. Text. Res. J. 2012, 82(2), 129–147. DOI: 10.1177/0040517511424524.
  • Kong, C. S.; Lee, S. G.; Lee, S. H.; Lee, K. Y.; Noh, H. W.; Yoo, W. S.; Kim, H. S. Electrospinning Instabilities in the Drop Formation and Multi-Jet Ejection Part I: Various Concentrations of PVA (Polyvinyl alcohol) Polymer Solution. J. Macromol. Sci., Part B 2011, 50(3), 517–527. DOI: 10.1080/00222341003781168.
  • Vaseashta, A. Controlled Formation of Multiple Taylor Cones in Electrospinning Process. Appl. Phys. Lett. 2007, 90(9), 93115. DOI: 10.1063/1.2709958.
  • Yang, E.; Shi, J.; Xue, Y. Influence of Electric Field Interference on Double Nozzles Electrospinning. J. Appl. Polym. Sci. 2010, 116(6), 3688–3692. DOI: 10.1002/app.31927.
  • Liu, Y.; Zhang, L.; Sun, X.-F.; Liu, J.; Fan, J.; Huang, D.-W. Multi-Jet Electrospinning via Auxiliary Electrode. Mater. Lett. 2015, 141, 153–156. DOI: 10.1016/j.matlet.2014.11.079.
  • Pu, C.; He, J.; Cui, S.; Gao, W. Double-Nozzle Air-Jet Electrospinning for Nanofiber Fabrication. J. Appl. Polym. Sci. 2014, 131(6), 40040. DOI: 10.1002/app.40040.
  • He, J.; Qi, K.; Wang, L.; Zhou, Y.; Liu, R.; Cui, S. Combined Application of Multinozzle Air-Jet Electrospinning and Airflow Twisting for the Efficient Preparation of Continuous Twisted Nanofiber Yarn. Fibers Polym. 2015, 16(6), 1319–1326. DOI: 10.1007/s12221-015-1319-8.
  • Lukas, D.; Sarkar, A.; Pokorny, P. Self-Organization of Jets in Electrospinning from Free Liquid Surface: A Generalized Approach. J. Appl. Phys. 2008, 103(8), 84309. DOI: 10.1063/1.2907967.
  • Roman, M. P.; Thoppey, N. M.; Gorga, R. E.; Bochinski, J. R.; Clarke, L. I. Maximizing Spontaneous Jet Density and Nanofiber Quality in Unconfined Electrospinning: The Role of Interjet Interactions. Macromolecules 2013, 46(18), 7352–7362. DOI: 10.1021/ma4013253.
  • Yarin, A. L.; Zussman, E. Upward Needleless Electrospinning of Multiple Nanofibers. Polymer 2004, 45(9), 2977–2980. DOI: 10.1016/j.polymer.2004.02.066.
  • Dosunmu, O. O.; Chase, G. G.; Kataphinan, W.; Reneker, D. H. Electrospinning of Polymer Nanofibres from Multiple Jets on a Porous Tubular Surface. Nanotechnology 2006, 17(4), 1123–1127. DOI: 10.1088/0957-4484/17/4/046.
  • Fuh, Y.-K.; Lien, L.-C.; Chen, S.-Y. High-Throughput Production of Nanofibrous Mats via a Porous Materials Electrospinning Process. J. Macromol. Sci., Part B 2012, 51(9), 1742–1749. DOI: 10.1080/00222348.2012.659628.
  • Zhou, Z.; Wu, X.-F.; Ding, Y.; Yu, M.; Zhao, Y.; Jiang, L.; Xuan, C.; Sun, C. Needleless Emulsion Electrospinning for Scalable Fabrication of Core–Shell Nanofibers. J. Appl. Polym. Sci. 2014, 131(20), 40896. DOI: 10.1002/app.40896.
  • Bhattacharyya, I.; Molaro, M. C.; Braatz, R. D.; Rutledge, G. C. Free Surface Electrospinning of Aqueous Polymer Solutions from a Wire Electrode. Chem. Eng. J. 2016, 289, 203–211. DOI: 10.1016/j.cej.2015.12.067.
  • Brettmann, B. K.; Tsang, S.; Forward, K. M.; Rutledge, G. C.; Myerson, A. S.; Trout, B. L. Free Surface Electrospinning of Fibers Containing Microparticles. Langmuir 2012, 28(25), 9714–9721. DOI: 10.1021/la301422x.
  • Forward, K. M.; Flores, A.; Rutledge, G. C. Production of Core/Shell Fibers by Electrospinning from a Free Surface. Chem. Eng. Sci. 2013, 104, 250–259. DOI: 10.1016/j.ces.2013.09.002.
  • Zhang, J.; Song, M.; Li, D.; Yang, Z.; Cao, J.; Chen, Y.; Xu, Y.; Wei, Q. Preparation of Self-Clustering Highly Oriented Nanofibers by Needleless Electrospinning Methods. Fibers Polym. 2016, 17(9), 1414–1420. DOI: 10.1007/s12221-016-6581-x.
  • Wang, X.; Xu, W. Effect of Experimental Parameters on Needleless Electrospinning from a Conical Wire Coil. J. Appl. Polym. Sci. 2012, 123(6), 3703–3709. DOI: 10.1002/app.35044.
  • Wang, X.; Niu, H.; Wang, X.; Lin, T. Needleless Electrospinning of Uniform Nanofibers Using Spiral Coil Spinnerets. J. Nanomater. 2012, 2012, 785920. DOI: 10.1155/2012/785920.
  • Wang, X.; Wang, X.; Lin, T. 3D Electric Field Analysis of Needleless Electrospinning from a Ring Coil. J. Ind. Text. 2014, 44(3), 463–476. DOI: 10.1177/1528083713498916.
  • Holopainen, J.; Penttinen, T.; Santala, E.; Ritala, M. Needleless Electrospinning with Twisted Wire Spinneret. Nanotechnology 2015, 26(2), 25301. DOI: 10.1088/0957-4484/26/2/025301.
  • Jirsak, O.; Sanetrnik, F.; Lukas, D.; Kotek, V.; Martinova, L.; Chaloupek, J. A Method of Nanofibres Production from a Polymer Solution Using Electrostatic Spinning and a Device for Carrying Out the Method. U.S. Patent. Czech Republic, 7585437 B2, 2005.
  • Cengiz-Çallıoǧlu, F.; Jirsak, O.; Dayik, M. Investigation into the Relationships Between Independent and Dependent Parameters in Roller Electrospinning of Polyurethane. Text. Res. J. 2013, 83(7), 718–729. DOI: 10.1177/0040517512447587.
  • Yener, F.; Jirsak, O. Comparison between the Needle and Roller Electrospinning of Polyvinylbutyral. J. Nanomater. 2012, 2012, 839317. DOI: 10.1155/2012/839317.
  • Wu, D.; Zheng, G.; Wang, L.; Lai, X.; Sun, D. Large-Scale Patterned Nanofibers via Tip-Less Electrospinning. IEEE 5th International Conference on Nano/Micro Engineered and Molecular Systems, Xiamen, China IEEE, January 2010, pp. 437–440. DOI: 10.1109/NEMS.2010.5592427.
  • Nurwaha, D.; Wang, X. Free Surface Electrospinning: Investigation of the Combined Effects of Process Parameters on the Morphology of Electrospun Fibers. Fibers Polym. 2015, 16(4), 850–866. DOI: 10.1007/s12221-015-0850-y.
  • Pokorny, P.; Kostakova, E.; Sanetrnik, F.; Mikes, P.; Chvojka, J.; Kalous, T.; Bilek, M.; Pejchar, K.; Valtera, J.; Lukas, D. Effective AC Needleless and Collectorless Electrospinning for Yarn Production. Phys. Chem. Chem. Phys. 2014, 16(48), 26816–26822. DOI: 10.1039/C4CP04346D.
  • Huang, C.; Niu, H.; Wu, J.; Ke, Q.; Mo, X.; Lin, T. Needleless Electrospinning of Polystyrene Fibers with an Oriented Surface Line Texture. J. Nanomater. 2012, 2012, 473872. DOI: 10.1155/2012/473872.
  • Fang, J.; Niu, H.; Wang, H.; Wang, X.; Lin, T. Enhanced Mechanical Energy Harvesting Using Needleless Electrospun Poly(vinylidene fluoride) Nanofibre Webs. Energy Environ. Sci. 2013, 6(7), 2196–2202. DOI: 10.1039/c3ee24230g.
  • Niu, H.; Lin, T.; Wang, X. Needleless Electrospinning. I. A Comparison of Cylinder and Disk Nozzles. J. Appl. Polym. Sci. 2009, 114(6), 3524–3530. DOI: 10.1002/app.30891.
  • Shuakat, M. N.; Lin, T. Highly-Twisted, Continuous Nanofibre Yarns Prepared by a Hybrid Needle-Needleless Electrospinning Technique. RSC Adv. 2015, 5(43), 33930–33937. DOI: 10.1039/C5RA03906A.
  • Liu, Z.; Ang, K. K. J.; He, J. Needle-Disk Electrospinning Inspired by Natural Point Discharge. J. Mater. Sci. 2017, 52(4), 1823–1830. DOI: 10.1007/s10853-016-0472-9.
  • Ali, U.; Niu, H.; Aslam, S.; Jabbar, A.; Rajput, A. W.; Lin, T. Needleless Electrospinning Using Sprocket Wheel Disk Spinneret. J. Mater. Sci. 2017, 52(12), 7567–7577. DOI: 10.1007/s10853-017-0989-6.
  • Miloh, T.; Spivak, B.; Yarin, A. L. Needleless Electrospinning: Electrically Driven Instability and Multiple Jetting from the Free Surface of a Spherical Liquid Layer. J. Appl. Phys. 2009, 106(11), 114910. DOI: 10.1063/1.3264884.
  • Niu, H.; Wang, X.; Lin, T. Needleless Electrospinning: Influences of Fibre Generator Geometry. J. Text. Inst. 2012, 103(7), 787–794. DOI: 10.1080/00405000.2011.608498.
  • Thoppey, N. M.; Bochinski, J. R.; Clarke, L. I.; Gorga, R. E. Unconfined Fluid Electrospun into High Quality Nanofibers from a Plate Edge. Polymer 2010, 51(21), 4928–4936. DOI: 10.1016/j.polymer.2010.07.046.
  • Thoppey, N. M.; Gorga, R. E.; Clarke, L. I.; Bochinski, J. R. Control of the Electric Field–Polymer Solution Interaction by Utilizing Ultra-Conductive Fluids. Polymer 2014, 55(24), 6390–6398. DOI: 10.1016/j.polymer.2014.10.007.
  • Wei, L.; Yu, H.; Jia, L.; Qin, X. High-Throughput Nanofiber Produced by Needleless Electrospinning Using a Metal Dish as the Spinneret. Text. Res. J. 2016, 1–9. DOI: 10.1177/0040517516677232.
  • Molnar, K.; Nagy, Z.K. Corona-Electrospinning: Needleless Method for High-Throughput Continuous Nanofiber Production. Eur. Polym. J. 2016, 74, 279–286. DOI: 10.1016/j.eurpolymj.2015.11.028.
  • Yang, W.; Liu, Y.; Zhang, L.; Cao, H.; Wang, Y.; Yao, J. Optimal Spinneret Layout in Von Koch Curves of Fractal Theory Based Needleless Electrospinning Process. AIP Adv. 2016, 6(6), 65223. DOI: 10.1063/1.4954982.
  • Yan, X.; Marini, J.; Mulligan, R.; Deleault, A.; Sharma, U.; Brenner, M. P.; Rutledge, G. C.; Freyman, T.; Pham, Q. P. Slit-Surface Electrospinning: A Novel Process Developed for High-Throughput Fabrication of Core–Sheath Fibers. PLoS ONE 2015, 10(5), e0125407. DOI: 10.1371/journal.pone.0125407 (Pisignano, D., editor).
  • Yan, G.; Niu, H.; Shao, H.; Zhao, X.; Zhou, H.; Lin, T. Curved Convex Slot: An Effective Needleless Electrospinning Spinneret. J. Mater. Sci. 2017, 52(19), 11749–11758. DOI: 10.1007/s10853-017-1315-z.
  • Jiang, G.; Zhang, S.; Qin, X. Effect of Processing Parameters on Free Surface Electrospinning from a Stepped Pyramid Stage. J. Ind. Text. 2016, 45(4), 483–494. DOI: 10.1177/1528083714537101.
  • Jiang, G.; Qin, X. An Improved Free Surface Electrospinning for High Throughput Manufacturing of Core–Shell Nanofibers. Mater. Lett. 2014, 128, 259–262. DOI: 10.1016/j.matlet.2014.04.074.
  • Jiang, G.; Zhang, S.; Wang, Y.; Qin, X. An Improved Free Surface Electrospinning with Micro-Bubble Solution System for Massive Production of Nanofibers. Mater. Lett. 2015, 144, 22–25. DOI: 10.1016/j.matlet.2014.12.139.
  • Liu, F.-J.; He, J.-H.; Chen, R.-X.; Xu, L.; Wang, P. Fabrication of Nanoporous Fibers via Bubble Electrospinning. Therm. Sci. 2014, 18(5), 1455–1458. DOI: 10.2298/TSCI1405455L.
  • Liu, Z.; He, J.-H. Polyvinyl Alcohol/Starch Composite Nanofibers by Bubble Electrospinning. Therm. Sci. 2014, 18(5), 1473–1475. DOI: 10.2298/TSCI1405473L.
  • Liu, Y.; He, J.-H.; Yu, J.-Y. Bubble-Electrospinning: A Novel Method for Making Nanofibers. J. Phys. Conf. Ser. 2008, 96, 12001. DOI: 10.1088/1742-6596/96/1/012001.
  • Liu, Y.; Dong, L.; Fan, J.; Wang, R.; Yu, J.-Y. Effect of Applied Voltage on Diameter and Morphology of Ultrafine Fibers in Bubble Electrospinning. J. Appl. Polym. Sci. 2011, 120, 592–598. DOI: 10.1002/app.33203.
  • Higham, A. K.; Tang, C.; Landry, A. M.; Pridgeon, M. C.; Lee, E. M.; Andrady, A. L.; Khan, S. A. Foam Electrospinning: A Multiple Jet, Needle-Less Process for Nanofiber Production. AICHE J. 2014, 60(4), 1355–1364. DOI: 10.1002/aic.14381.
  • Sidaravicius, J.; Rinkūnas, R.; Lozovski, T.; Heiskanen, I.; Backfolk, K. The Influence of Solution Parameters on the Electrospinning Intensity from Foamed Surface. J. Appl. Polym. Sci. 2015, 132(23), 42034. DOI: 10.1002/app.42034.
  • Weitz, R. T.; Harnau, L.; Rauschenbach, S.; Burghard, M.; Kern, K. Polymer Nanofibers via Nozzle-Free Centrifugal Spinning. Nano Lett. 2008, 8(4), 1187–1191. DOI: 10.1021/nl080124q.
  • Chen, H.; Xu, H.; Sun, J.; Liu, C.; Yang, B. Effective Method for High-Throughput Manufacturing of Ultrafine Fibres via Needleless Centrifugal Spinning. Micro Nano Lett. 2015, 10(2), 81–84. DOI: 10.1049/mnl.2014.0479.
  • Engström, J.; Hagström, B. Centrifugal Spinning of Nano-Fiber Webs—A Parameter Study of a Novel Spinning Process. Nord. Text. J. 2009, 83–91.
  • Lu, B.; Wang, Y.; Liu, Y.; Duan, H.; Zhou, J.; Zhang, Z.; Wang, Y.; Li, X.; Wang, W.; Lan, W.; Xie, E. Superhigh-Throughput Needleless Electrospinning using a Rotary Cone as Spinneret. Small 2010, 6(15), 1612–1616. DOI: 10.1002/smll.201000454.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.