826
Views
34
CrossRef citations to date
0
Altmetric
Review

Microhole drilling through electrochemical processes: A review

, &
Pages 1379-1405 | Received 10 Aug 2017, Accepted 12 Oct 2017, Published online: 20 Nov 2017

References

  • Masuzawa, T. State of the Art of Micromachining. CIRP Ann. Manuf. Technol. 2000, 49(2), 473–488.
  • Momosaki, E.; Kogure, S. The Application of Piezoelectricity to Watches. Ferroelectrics 2011, 40(1), 203–216.
  • Hayashi, T. Micromechanisms and their Characteristics. IEEE Workshop on MEMS ‘94, Proceedings, 1994, Oiso, Japan. DOI: https://doi.org/10.1109/MEMSYS.1994.555595.
  • Prakash, V.; Shubham; Kumar, P.; Singh, P. K.; Das, A. K.; Chattopadhyaya, S.; Mandal, A.; Dixit, A. R. Surface Alloying of Miniature Components by Micro Electrical Discharge Process. Mater. Manuf. Processes 2017, 1–11. DOI: https://doi.org/10.1080/10426914.2017.1364755. ( just accepted).
  • Ong, N. S.; Zhang, H.; Woo, W. H. Plastic Injection Molding of High-Aspect Ratio Micro-Rods. Mater. Manuf. Process 2006, 21(8), 834–831.
  • Kadirvel, A.; Hariharan, P.; Gowri, S. Experimental Investigation on the Electrode Specific Performance in Micro-EDM of Die-Steel. Mater. Manuf. Process 2013, 28(4), 390–396.
  • Sun, Y.; Gong, Y.; Cheng, J.; Cai, M. Experimental Investigation on Carbon Steel Micro-Rod Machining by LS-WEDT. Mater. Manuf. Process 2017, 1–9. DOI: https://doi.org/10.1080/10426914.2017.1339313. ( just accepted).
  • Öpöz, T. T.; Ekmekci, B.; Erden, A. An Experimental Study on the Geometry of Microholes in Microelectric Discharge Machining. Mater. Manuf. Processes 2009, 24(12), 1236–1241.
  • Bhattacharyya, B.; Malapati, M.; Munda, J. Experimental Study on Electrochemical Micromachining. J. Mater. Process. Technol. 2005, 169, 485–492.
  • Patra, K.; Anand, R. S.; Steiner, M.; Biermann, D. Experimental Analysis of Cutting Forces in Microdrilling of Austenitic Stainless Steel (X5CrNi18–10). Mater. Manuf. Processes 2015, 30, 248–255.
  • Hung, J.; Liu, H.; Chang, Y.; Hung, K.; Liu, S. Development of Helical Electrode Insulation Layer for Electrochemical Micro Drilling. Proc. CIRP 2013, 6, 374–378.
  • Muralikrishnan, B.; Stone, J. Fiber Deflection Probe Uncertainty Analysis for Micro Holes. NCSLI Meas. 2016, 3(1), 38–44.
  • Kedzierski, M. A.; Worthington, J. L. Design And Machining Of Copper Specimens With Micro Holes For Accurate Heat Transfer Measurements. Exp. Heat Transfer 2007, 6(4), 329–344.
  • Wang, M. L.; Li, J. Z.; Yu, Z. Y.; Li, X. Micro-Drilling of Pre-Sintered Alumina Ceramic. Adv. Mater. Res. 2015, 1120–1121, 27–31.
  • Zhang, P.; Guo, X. Y.; Wu, C. G. Research of Micro Hole Vibration Drilling Process and Experiment. Mater. Sci. Forum 2012, 697–698, 161–165.
  • He, X. L.; Wang, Y. K.; Wang, Z. L.; Zeng, Z. Q. Micro-Hole Drilled by EDM-ECM Combined Processing. Key Eng. Mater. 2013, 562–565, 52–56.
  • Winiarski, B.; Withers, P. J. Mapping Residual Stress Profiles at the Micron Scale Using FIB Micro-Hole Drilling. Appl. Mech. Mater. 2010, 24–25, 267–272.
  • Wang, H.; Li, X.; Ju, Q. M. Online Monitoring System for Micro-Hole Drilling Based on Rough Set Fuzzy Control. Key Eng. Mater. 2011, 464, 15–19.
  • Rusli, M.; Furutani, K. Performance of Micro-Hole Drilling by Ultrasonic-Assisted Electro-Chemical Discharge Machining. Adv. Mater. Res. 2012, 445, 865–870.
  • Ren, Z. H.; Zheng, X. H.; An, Q. L.; Wang, C. Y.; Chen, M. Tool Breakage Feature Extraction in PCB Micro-Hole Drilling using Vibration Signals. Adv. Mater. Res. 2012, 497, 126–131.
  • Zheng, H. M.; Wang, D. H. Study on the Fuzzy Control System of Micro-Hole Drilling. Adv. Mater. Res. 2012, 580, 126–129.
  • Li, J. Z.; Wu, T.; Zhang, L. A Method of Machining Micro Hole and Micro Cavity in Ceramics. Appl. Mech. Mater. 2012, 130–134, 923–926.
  • Ali, M. Y.; Hamad, M. H.; Karim, A. I. Form Characterization of Microhole Produced by Microelectrical Discharge Drilling. Mater. Manuf. Processes 2009, 24, 683–687.
  • D’Urso, G.; Maccarini, G.; Ravasio, C. Process Performance of Micro-EDM Drilling of Stainless Steel. Int. J. Adv. Manuf. Technol. 2014, 72, 1287–1298.
  • Biswas, R.; Kuar, A. S.; Biswas, S. K.; Mitra, S. Effects of Process Parameters on Hole Circularity and Taper in Pulsed Nd:YAG Laser Microdrilling of Tin-Al2O3 Composites. Mater. Manuf. Processes 2010, 25(6), 503–514.
  • Tong, H.; Li, Y.; Zhang, L. Swing Mechanism for Micro EDM Drilling of Fuel Jet Nozzles. Adv. Mater. Res. 2012, 591–593, 391–395.
  • Yu, Z. Y.; Zhang, Y.; Li, J.; Luan, J.; Zhao, F.; Guo, D. High Aspect Ratio Micro-Hole Drilling Aided with Ultrasonic Vibration and Planetary Movement of Electrode by Micro-EDM. CIRP Ann. Manuf. Technol. 2009, 58, 213–216.
  • Ahn, Y.; Lee, S. H. Classification and Prediction of Burr Formation in Micro Drilling of Ductile Metals. Int. J. Prod. Res. 2016, 55(17), 4833–4846.
  • Ogawa, K.; Nakagawa, H.; Hirogaki, T.; Aoyama, E. Effects of Diamondcoated Tools in Micro-Drilling of CFRP Plates using a high-Speed Spindle. Adv. Mater. Process. Technol. 2015, 1(1–2), 192–200.
  • Yang, Z.; Tan, Q.; Lijiang Wang, L. Principle of Precision Micro-Drilling with Axial Vibration of Low Frequency. Int. J. Prod. Res. 2010, 40(6), 1421–1427.
  • Zhang, P. F.; Churi, N. J.; Pei, Z. J.; Treadwell, C. Mechanical Drilling Processes For Titanium Alloys: A Literature Review. Mach. Sci. Technol. 2008, 12(4), 417–444.
  • Arunachalam, R. Machinability of Nickel-Based High Temperature Alloys. Mach Sci Technol 2000, 4(1), 127–168.
  • Imran, M.; Mativenga, P. T.; Gholinia, A.; Withers, P. J. Evaluation of Surface Integrity in Micro Drilling Process for Nickel-Based Superalloy. Int. J. Adv. Manuf. Technol. 2011, 55(5–8), 465–476.
  • Chang, D.; Lin, S. Tool Wear, Hole Characteristics, and Manufacturing Tolerance in Alumina Ceramic Micro-Drilling Process. Mater. Manuf. Processes 2012, 27, 306–313.
  • Jafferson, J. M.; Hariharan, P. Investigation of the Quality of Micro Holes Machined by µEDM using Image Processing. Mater. Manuf. Processes 2013, 28, 1356–1360.
  • Guu, Y. H.; Deng, C. S.; Hou, M. T.; Hsu, C.; Tseng, K. Optimization of Machining Parameters for Stress Concentration in Micro-Drilling of Titanium Alloy. Mater. Manuf. Processes 2012, 27, 207–213.
  • Kumar, S. P. L.; Jerald, J.; Kumanan, S.; Prabakaran, R. A Review on Current Research Aspects in Tool-Based Micromachining Processes. Mater. Manuf. Processes 2014, 29(11–12), 1291–1337.
  • Swain, N.; Kumar, P.; Srinivas, G.; Ravishankar, S.; Barshilia, H. C. Mechanical Micro-Drilling of Nimonic 80A Superalloy using Uncoated and TiAlN Coated Micro-Drills. Mater. Manuf. Processes 2017, 32(13), 1537–1546.
  • Anand, R. S.; Patra, K. Modeling and Simulation of Mechanical Micro-Machining—A Review. Mach. Sci. Technol. 2014, 18(3), 323–347.
  • Sahoo, S.; Thakur, A.; Gangopadhyay, S. Application of Analytical Simulation on Various Characteristics of Hole Quality during Micro-Drilling of Printed Circuit Board. Mater. Manuf. Processes 2016, 31(14), 1927–1934.
  • Hourng, L. W.; Fan, Z. W. Electrochemical Micro-Drilling with Ultra-Short Pulses. Adv. Mater. Res. 2011, 189–193, 3179–3182.
  • Weng, F. T.; Hsu, F. C.; Hsu, K. S.; Ho, C. T. Manufacturing of Micro Drill with Electrochemical Etching. Adv. Mater. Res. 2011, 239–242, 671–674.
  • Selvan R. T.; Kartikeyan, T.; Vendan, S. A. Parameter Optimization for Drilling Micro Holes in Tigr 5 by Electrochemical Micro Machining. Adv. Mater. Res. 2012, 548, 471–476.
  • Liu, Y.; Huang, S. F. Experimental Study on Electrochemical Drilling of Micro Holes with High Aspect Ratio. Adv. Mater. Res. 2014, 941–944, 1952–1955.
  • Saeed, M. T.; Chavoshi, Z. Prediction and Analysis of Radial Overcut in Holes Drilled by Electrochemical Machining Process. Cent. Eur. J. Eng. 2013, 3(3), 466–474.
  • Wei, J. W.; Chen, W.; Gao, F.; Han, F. A New Electrode Sidewall Insulation Method in Electrochemical Drilling. Int. J. Adv. Manuf. Technol. 2014, 75(1–4), 21–23.
  • Tsui, H.; Hung, J.; Wu, K.; You, J.; Yan, B. Fabrication of a Microtool in Electrophoretic Deposition for Electrochemical Micro Drilling and In Situ Micro Polishing. Mater. Manuf. Processes 2011, 26, 740–745.
  • Das, A. K.; Saha, P. Experimental Investigation on Micro-Electrochemical Sinking Operation for Fabrication of Micro-Holes. J. Braz. Soc. Mech. Sci. Eng. 2015, 37(2), 657–663.
  • Das, A. K.; Saha, P. Machining of Circular Micro Holes by Electrochemical Micro-Machining Process. Adv. Manuf. 2014, 1(4), 314–319.
  • Rathod, V.; Doloi, B.; Bhattacharyya, B. Sidewall Insulation of Micro Tool for Electrochemical Micromachining to Enhance the Machining Accuracy. Mater. Manuf. Processes 2014, 29, 305–313.
  • David, A.; Heather, A.; Peter, L. A Technical Comparison of Micro-Electrodischarge Machining, Micro Drilling and Copper Vapour Laser Machining for the Fabrication of Ink Jet Nozzles. SPIE 2000, 4019, 531–540.
  • Muhammad P. J.; Yoke S. W.; Mustafizur R. A Comparative Experimental Investigation of Deep-Hole Micro-EDM Drilling Capability for Cemented Carbide (WC-Co) against Austenitic Stainless Steel (SUS 304). Int. J. Adv. Manuf. Technol. 2010, 46, 1145–1160.
  • Natarajan, N.; Suresh, P. Experimental Investigations on the Microhole Machining of 304 Stainless Steel by Micro-EDM Process using RC-Type Pulse Generator. Int. J. Adv. Manuf. Technol. 2015, 77, 1741–1750.
  • Pradhan, B. B.; Masanta, M.; Sarkar, B. R.; Bhattacharyya, B. Investigation of Electro-Discharge Micro-Machining of Titanium Super Alloy. Int. J. Adv. Manuf. Technol. 2009, 41, 1094–1106.
  • Sarhan, A. A. D.; Fen, L. S.; Yip, M. W.; Sayuti, M. Fuzzy Modeling for Micro EDM Parameters Optimization in Drilling of Biomedical Implants Ti-6Al-4V Alloy for Higher Machining Performance. Int. J. Mech., Aero., Ind. Mechatron. Eng. 2015, 9, 197–201.
  • Jahan, M. P.; Rahman, M.; Wong, Y. S.; Fuhua, L. On-Machine Fabrication of High-Aspect-Ratio Micro-Electrodes and Application in Vibration-Assisted Micro-Electrodischarge Drilling of Tungsten Carbide. J. Eng. Manuf. 2010, 224, 795–814.
  • Lee, P. A.; Kim, Y.; Kim, H. Effect of Low Frequency Vibration on Micro EDM Drilling. Int. J. Prec. Eng. Manuf. 2015, 16, 2617–2622.
  • Yilmaz, V.; Sarikaya, M.; Dilipak, H. Investigation of Deep-Drilled Micro-Hole Profiles in Hadfield Steel. Mater. Test. 2016, 58, 224–230.
  • Yeo, S. H.; Tan, L. K. Effects of Ultrasonic Vibrations in Micro Electro-Discharge Machining of Micro Holes. J. Micro Mech. Micro Eng. 1999, 9, 345–352.
  • Chung, D. K.; Shin, H. S.; Kim, B. H.; Park, M. S.; Chu, C. N. Surface Finishing of Micro-EDM Holes using Deionized Water. J. Micro Mech. Micro Eng. 2009, 19, 7.
  • Meena, V. K.; Azad, M. S. Grey Relational Analysis of Micro-EDM Machining of Ti-6Al-4V Alloy. Mater. Manuf. Processes 2012, 27(9), 973–977.
  • Zhang, Y.; Liu, Y.; Ji, R.; Cai, B.; Wang, F.; Tian, X. Carbon Fiber in Micro–Electric Discharge Machining. Mater. Manuf. Processes 2013, 28(10), 1133–1136.
  • Wang, C.; Chu, X.; Liu, G.; Zhu, K.; Hong, Y.; Chi, G. The Design of Integrated Route in Micro-EDM. Mater. Manuf. Processes 2013, 28, 1348–1355.
  • Ganguly, D.; Acherjee, B.; Kuar, A. S.; Mitra, S. Hole Characteristics Optimization in Nd:YAG Laser Micro-Drilling of Zirconium Oxide by Grey Relation Analysis. Int. J. Adv. Manuf. Technol. 2012, 61(9–12), 1255–1262.
  • Biswas, R.; Kuar, A. S.; Biswas, S. K.; Mitra, S. Characterization of Hole Circularity in Pulsed Nd:YAG Laser Micro-Drilling of TiN–Al2O3 Composites. Int. J. Adv. Manuf. Technol. 2010, 51(9–12), 983–994.
  • Bara, A.; Sahoo, S. K.; Naik, S. S. Multi-response Optimization of Nd:YAG Laser for Micro-drilling of 304 Stainless Steel Using Grey Relational Analysis. Adv. 3D Print. Add. Manuf. Technol. 2017, 101–110. DOI: https://doi.org/10.1007/978-981-10-0812-2_9
  • Okamoto, Y.; Asako, K.; Nishi, N.; Sakagawa, T.; Okada, A. Effect of Surrounding Gas Condition on Surface Integrity in Micro-Drilling of SiC by ns Pulsed Laser. Appl. Phys. B 2015, 119(3), 509–517.
  • Matsuoka, Y.; Kizuka, Y.; Inoue, T. The Characteristics of Laser Micro Drilling using a Bessel Beam. Appl. Phys. A 2006, 84(4), 423–430.
  • Zhu, X.; Naumov, A. Y.; Villeneuve, D. M.; Corkum, P. B. Influence of Laser Parameters and Material Properties on Micro Drilling with Femtosecond Laser Pulses. Appl. Phys. A 1999, 69, S367–S371.
  • Xiang, Y.; Wang, K.; Dong, X.; Duan, W.; Mei, X.; Wang, W. Laser Drilling of Micro-Holes with Small Diameter Beyond the Limits of Focused Spot by using a Sieve Plate or a Cover Plate. Int. J. Adv. Manuf. Technol. 2016, 87(9–12), 2471–2484.
  • Ouyang, L.; Ma, Y.; Chen, J.; Zeng, Z.; Tu, Y. Robust Optimisation of Nd: YLF Laser Beam Micro-Drilling Process using Bayesian Probabilistic Approach. Int. J. Prod. Res. 2016, 54(21), 6644–6659.
  • Al-Ahmari, A.; Rasheed, M. S.; Mohammed, M. K.; Saleh, T. A Hybrid Machining Process Combining Micro-EDM and Laser Beam Machining of Nickel-Titanium Based Shape Memory Alloy. Mater. Manuf. Processes 2016, 31(4), 447–455.
  • Yang C. T.; Ho, S. S.; Yan, B. H. Micro Hole Machining of Borosilicate Glass through Electrochemical Discharge Machining (ECDM). Key Eng. Mater. 2001, 196, 149–166.
  • Dong, S.; Wang, Z.; Wang, Y. High-Speed Electrochemical Discharge Drilling (HSECDD) for Micro-Holes on C17200 Beryllium Copper Alloy in Deionized Water. Int. J. Adv. Manuf. Technol. 2017, 88(1–4), 827–835.
  • Harry Krötz, H.; Wegener, K. Sparc Assisted Electrochemical Machining: A Novel Possibility for Microdrilling into Electrical Conductive Materials using the Electrochemical Discharge Phenomenon. Int. J. Adv. Manuf. Technol. 2015, 79(9–12), 1633–1643.
  • Krötz, H.; Roth, R.; Wegener, K. Experimental Investigation and Simulation of Heat Flux into Metallic Surfaces Due to Single Discharges in Micro-Electrochemical Arc Machining (Micro-ECAM). Int. J. Adv. Manuf. Technol. 2013, 68(5–80), 1267–1275.
  • Huang, S. F.; Zhu, D.; Zeng, Y. B.; Wang, W.; Liu, Y. Micro-Hole Machined by Electrochemical Discharge Machining (ECDM) with High Speed Rotating Cathode. Adv. Mater. Res. 2011, 295–297, 1794–1799.
  • Wu, K. L.; Lee, H. M.; Chin, K. H. Application of Electrochemical Discharge Machining to Micro-Machining of Quartz. Adv. Mater. Res. 2014, 939, 161–168.
  • Kulkarni, A.; Jai, V.; Misra, K. Electrochemical Spark Micromachining (Microchannels and Microholes) of Metals and Non-Metals. Int. J. Manuf. Technol. Manage. 2011, 22, 107–123.
  • Huang, S. F.; Liu, Y.; Li, J.; Hu, H. X.; Sun, L. Y. Electrochemical Discharge Machining Micro-Hole in Stainless Steel with Tool Electrode High-Speed Rotating. Mater. Manuf. Processes 2014, 29(5), 634–637.
  • Zhu, Z.; Dhokia, V. G.; Nassehi, A.; Newman, S. T. A Review of Hybrid Manufacturing Processes—State of the Art and Future Perspectives. Int. J. Comp. Integr. Manuf. 2013, 26(7), 596–615.
  • Chang, Y. J.; Hung, Y. C.; Kuo, C. L.; Hsu, J. C.; Ho, C. C. Hybrid Stamping and Laser Micromachining Process for Micro-Scale Hole Drilling. Mater. Manuf. Processes 2017, 32(15), 1685–1691.
  • Zhu, D.; Wang, W.; Fang, X. L.; Qu, N. S.; Xu, Z. Y. Electrochemical Drilling of Multiple Holes with Electrolyte-Extraction. CIRP Ann. Manuf. Technol. 2010, 59, 239–240.
  • Xiong, L.; Yang, L. Electrochemical Micromachining of Titanium Surfaces for Biomedical Applications. J. Mater. Process. Technol. 2005, 169, 173–178.
  • Bhattacharyya, B.; Munda, J.; Malapati, M. Advancement in Electrochemical Micro-machining. Int. J. Mach. Tools Manuf. 2004, 44, 1577–1589.
  • Singha, A.; Ananditaa, S.; Gangopadhyay, S. Microstructural Analysis and Multi Response Optimization During ECM of Inconel 825 Using Hybrid Approach. Mater. Manuf. Processes 2015, 30(7), 842–851.
  • Lohrengel, M. M. Pulsed Electrochemical Machining of Iron in NaNO3: Fundamentals and New Aspects. Mater. Fundam. Manuf. Processes 2005, 20(1), 1–8.
  • Mithu, M. A. H.; Fantoni, G.; Ciampi, J. The Effect of High Frequency and Duty Cycle in Electrochemical Microdrilling. Int. J. Adv. Manuf. Technol. 2011, 55, 921–933.
  • Malapati, M.; Bhattacharyya, B. Investigation into Electrochemical Micromachining Process during Micro-Channel Generation. Mater. Manuf. Processes 2011, 26, 1019–1027.
  • Burkert, S.; Schulze, H. P.; Gmelin, T.; Leone, M. The Pulse Electrochemical Micromachining (PECMM)—Specifications of the Pulse Units. Int. J. Mater. 2009, 2(1), 645–648.
  • Tang, Y. Laser Enhanced Electrochemical Machining Process. Mater. Manuf. Processes 2002, 17(6), 789–796.
  • Zhou, C. D.; Taylor, E. J. Electrochemical Machining for Hard Passive Alloys with Pulse Reverse Current. Trans. NAMRI/SME 1997, 25: 147–152.
  • Qian, S.; Feng, J.; Qu, N.; Li, H. Improving the Localization of Surface Texture by Electrochemical Machining with Auxiliary Anode. Mater. Manuf. Processes 2014, 29, 1488–1493.
  • Singh, A.; Anandita, S.; Gangopadhyay, S. Microstructural Analysis and Multiresponse Optimization During ECM of Inconel 825 Using Hybrid Approach. Mater. Manuf. Processes 2014, 30(7), 842–851.
  • Faust, C. L. Electrochemical Machining of Metals. Trans. IMF 2017, 355–363. DOI: https://doi.org/10.1080/00202967.1964.11869946
  • Lohrengel, M. M.; Rataj, K. P.; Schubert, N.; Schneider, M.; Höhn, S.; Michaelis, A.; Hackert-Oschätzchen, M.; Martin, A.; Schubert, A. Electrochemical Machining of Hard Metals—WC/Co as Example. Powder Metall. 2013, 57(1), 21–30.
  • Qu, N. S.; Hu, Y.; Zhu, D.; Xu, Z. Y. Electrochemical Machining of Blisk Channels with Progressive-Pressure Electrolyte Flow. Mater. Manuf. Processes 2014, 29(5), 572–578.
  • Huang, S. F.; Liu, Y. Electrochemical Micromachining of Complex Shapes on Nickel and Nickel-Based Superalloys. Mater. Manuf. Processes 2014, 29(11–12), 1483–1487.
  • Tang, L.; Guo, Y. Experimental Study of Special Purpose Stainless Steel on Electrochemical Machining of Electrolyte Composition. Mater. Manuf. Processes 2013, 28(4), 457–462.
  • Paczkowski, T.; Sawicki, J. Electrochemical Machining Of Curvilinear Surfaces. Mach. Sci. Technol. 2008, 12(1), 33–52.
  • Qian, S.; Ji, F.; Qu, N.; Li, H. Improving the Localization of Surface Texture by Electrochemical Machining with Auxiliary Anode. Mater. Manuf. Processes 2014, 29(11–12), 1488–1493.
  • Liua, Z.; Qiu, Z. J.; Heng, C.; Qu, N. S. Electrochemical Micro Drilling of Stainless Steel with Tool Electrode Jump Motion. Mater. Sci. Forum 2009, 626–627, 333–338.
  • Bassu, M.; Surdo, S.; Strambini, L. M.; Barillaro, G. Electrochemical Micromachining as an Enabling Technology for Advanced Silicon Microstructuring. Adv. Funct. Mater. 2012, 22(6), 1222–1228.
  • Allongue, P.; Jiang, P.; Kirchner, V.; Trimmer, A. L.; Schuster, R. Electrochemical Micromachining of p-Type Silicon. J. Phys. Chem. B 2004, 108(38), 14434–14439.
  • Choi, S.; Ryu, S. H.; Choi, D. K.; Chu, C. N. Fabrication of WC Micro-Shaft by using Electrochemical Etching. Int. J. Adv. Manuf. Technol. 2007, 31(7), 682–687.
  • Senthilkumar, C.; Ganesan, G.; Karthikeyan, R.; Srikanth, S. Modelling and Analysis of Electrochemical Machining of Cast Al/20%SiCp Composites. Mater. Sci. Technol. 2010, 26(3), 289–296.
  • Sankar, M.; Gnanavelbabu, A.; Rajkumar K.; Thushal, N. A. Electrolytic Concentration Effect on the Abrasive Assisted-Electrochemical Machining of an Aluminum–Boron Carbide Composite. Mater. Manuf. Processes 2016, 32(6), 687–692.
  • Datta, M.; Shenoy, R. V.; Rominkiw, L. T. Recent Advances in the Study of Electrochemical Micromachining. Trans. ASME 1996, 118, 29–36.
  • Osenbrugger, C. V.; Regt, C. D. Electrochemical Micromachining. Philips Tech. Rev. 1985, 42, 22–32.
  • Datta, M.; Romankiw, L. T. Applications of Chemical and Electrochemical Micromachining in the Electronic Industry. J. Electrochem. Soc. 1989, 136, 285C.
  • Shenoy, R. V.; Datta, M.; Romankiw, L. T. Investigation of Island Formation During Through Mask Electrochemical Micromachining. J. Electrochem. Soc. 1996, 143(7), 2305–2309.
  • Datta, M.; Sheppard, K.; Snyder, D. Electrochemical Microfabrication-I. The Electrochemical Society: Pennington, NJ, 1992; pp 92–93.
  • Thanigaivelan, R.; Arunachalam, R. M. Experimental Study on the Influence of Tool Electrode Tip Shape on Electrochemical Micromachining of 304 Stainless Steel. Mater. Manuf. Processes 2010, 25(10), 1181–1185.
  • Yong, L.; Yunfei, Z.; Guang, Y.; Liangqiang, P. Localized Electrochemical Micromachining with Gap Control. Sens. Actuators 2003, 108, 144–148.
  • Datta, M. Micromachining by Electrochemical Dissolution. Micromach. Eng. Mater. 2002, 239–276. ISBN: 0824706447 9780824706449.
  • Sundaram, M. M.; Rajurkar, K. Electrical and Electrochemical Processes. Intell. Energy Field Manuf., CRC Press 2010, 173–212. ISBN 9781420071016 - CAT# 71017.
  • Chang, D. Y.; Shen, P. C.; Hung, J. C.; Lee, S. J.; Tsui, H. P. Process Simulation–Assisted Fabricating Micro-Herringbone Grooves for a Hydrodynamic Bearing in Electrochemical Micromachining. Mater. Manuf. Processes 2011, 26, 1451–1458.
  • Pavlinich, S.; Mannapov, A. R.; Gimaev, N. Z.; Zaitsev, A. N. Electrochemical Shaping of Aerodynamic Seal Elements. Russ. Aeronaut. 2008, 51(3), 330–338.
  • Kamaraj, A. B.; Sundaram, M. M.; Mathew, R. Ultra High Aspect Ratio Penetrating Metal Microelectrodes for Biomedical Applications. Microsyst. Technol. 2013, 19(2), 179–186.
  • Dhobe, S. D.; Doloi, B.; Bhattacharyya, B. Analysis of Surface Characteristics of Titanium during ECM. Int. J. Mach. Machinab. Mater. 2011, 10(4), 293–309.
  • Wang, M.; Peng, W.; Yao, C.; Zhang, Q. Electrochemical Machining of the Spiral Internal Turbulator. Int. J. Adv. Manuf. Technol. 2010, 49(9–12), 969–973.
  • Ahn, S. H.; Ryu, S. H.; Choi, D. K.; Chu, C. N. Electro-Chemical Microdrilling using Ultra Short Pulses. Prec. Eng. 2004, 28, 129–134.
  • Reddy, M. S.; Jain, V. K.; Lal, G. K. Tool Design for ECM: Correction Factor Method. Trans. ASME 1998, 10, 111–118.
  • Zhu, D.; Yu, C. Y. Investigation on the Design of Tool Shape in ECM. ASME PED 1992, 58, 181–190.
  • Sorkhel, S. K.; Bhattacharyya, B. Computer Aided Design of Tools in ECM for Accurate Job Machining. Proceedings of the ISEM-9, Japan, 1989; pp 240–243.
  • Swain, A. K.; Sundaram, M. M.; Rajurkar, K. P. Use of Coated Microtools in Advanced Manufacturing: An Exploratory Study in Electrochemical Machining (ECM) Context. J. Manuf. Processes 2012, 14(2), 150–159.
  • Komanicky, V.; Fawcett, W. R. Fabrication of Gold and Platinum Single Crystal Ultra Microelectrodes. Electrochim. Acta 2004, 49(8), 1185–1194.
  • Zhu, D.; Xu, H. Y. Improvement of Electrochemical Machining Accuracy by using Dual Pole Tool. J. Mater. Process. Technol. 2006, 129, 05–18.
  • Wansheng, Z.; Xiaohai, L.; Zhenlong, W. Study on Micro Electrochemical Machining at Micro to Meso-scale. Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Zhuhai, China January, 2006; Vol. 18–21, pp 325–329.
  • Hai-Ping, T.; Jung-Chou, H.; Jyun-Cin, Y.; Biing-Hwa, Y. Improvement of Electrochemical Microdrilling Accuracy Using Helical Tool. Mater. Manuf. Processes 2008, 23, 499–505.
  • Hai-Ping, T.; Jung-Chou, H.; Kun-Ling, W.; Jyun-Cin, Y.; Biing-Hwa, Y. Fabrication of a Microtool in Electrophoretic Deposition for Electrochemical Microdrilling and in Situ Micropolishing. Mater. Manuf. Processes 2011, 26, 740–745.
  • Wang, M. H.; Zhu, D. Fabrication of Multiple Electrodes and their Application for Micro-Holes Array in ECM. Int. J. Adv. Manuf. Technol. 2009, 41, 42–47.
  • Mithu, M. A. H.; Fantoni, G.; Ciampi, J. A Step Towards the In-Process Monitoring for Electrochemical Microdrilling. Int. J. Adv. Manuf. Technol. 2011, 57, 969–982.
  • Zhi-Wen, F.; Lih-Wu, H. Electrochemical Micro-Drilling of Deep Holes by Rotational Cathode Tools. Int. J. Adv. Manuf. Technol. 2011, 52, 555–563.
  • Ghoshal B.; Bhattacharyya, B. Shape Control in Micro Borehole Generation by EMM with the Assistance of Vibration of Tool. Prec. Eng. 2014, 38, 127–137.
  • Wang, J.; Chen, W.; Gao, F.; Han, F. Ultrasonically Assisted Electrochemical Micro Drilling with Sidewall-Insulated Electrode. J. Eng. Manuf. 2016, 230(3), 466–474.
  • Hewidy, M. S.; Ebeid, S. J.; El Taweel, T. A.; Youssef, A. H. Modelling the Performance of ECM Assisted by Low Frequency Vibrations. J. Mater. Process. Technol. 2007, 189, 466–472.
  • Yu-Kui, W.; Xiao-Long, H.; Zhen-Long, W.; Chen, H. Electrochemical Drilling of Micro Holes with Flatted Electrode. Appl. Mech. Mater. 2011, 148–149, 1335–1338.
  • Wang, M.; Zhang, Y.; He, Z.; Peng, W. Deep Micro-Hole Fabrication in EMM on Stainless Steel using Disk Micro-Tool Assisted by Ultrasonic Vibration. J. Mater. Process. Technol. 2016, 229, 475–483.
  • Tomohiro, K.; Masanori, K. Micro Electrochemical Machining using Electrostatic Induction Feeding Method. CIRP Ann. Manuf. Technol. 2013, 62, 175–178.
  • Goel, H.; Pandey, P. M. Experimental Investigations into the Ultrasonic Assisted Jet Electrochemical Micro-Drilling Process. Mater. Manuf. Process 2017, 32(13), 1547–1556. DOI: https://doi.org/10.1080/10426914.2017.1279294.
  • Li, H. S.; Meng, D.; Wang, G. Q.; Zeng, Y. B. Electro-Chemical Micro Drilling by Micro-Spherical Electrode. Adv. Mater. Res. 2015, 1089, 324–330.
  • Fan, Z. W.; Hourng, L. W.; Lin, M. Y. Experimental Investigation on the Influence of Electrochemical Micro-Drilling by Short Pulsed Voltage. Int. J. Adv. Manuf. Technol. 2012, 61, 957–966.
  • Bannard, J. Electrochemical Machining. J. Appl. Electrochem. 1977, 7, 1–29.
  • Datta, M. Anodic Dissolution of Metals at High Rates. IBM J. Res. Dev. 1993, 37, 207–226.
  • Lesch, A.; Wittstock, G.; Burger, C.; Walther, B.; Hackenberg, J. External Control of Anodic Dissolution Mechanism of 100Cr6in Nitrate/Chloride Mixed Electrolytes. J. Electrochem. Sci. Eng. 2011, 1, 39–54.
  • Munda, J.; Malapati, M.; Bhattacharyya, B. Control of Micro Spark and Stray-Current Effect during EMM Process. J. Mater. Process. Technol. 2007, 194(1–3), 151–158.
  • Rajurkar, K. P.; Sundaram, M. M.; Malshe, A. P. Review of Electrochemical and Electrodischarge Machining. Proc. CIRP 2013, 6, 13–26.
  • Jain, V. K.; Rajurkar, K. P. An Integrated Approach for Tool Design in ECM. Prec. Eng. 1991, 13(2), 111–124.
  • Lohrengel, M. M.; Kluppel, I.; Rosenkranz, C.; Bettermann, H.; Schultze, J. W. Microscopic Investigations of Electrochemical Machining of Fe in NaNO[3]. Electrochim. Acta 2003, 48, 3203–3211.
  • Bejar, M. A.; Eterovich, F. Wire-Electrochemical Cutting with a NaNO3 Electrolyte. Int. J. Mater. Process. Technol. 1995, 55, 417–420.
  • Sato, T. Nontraditional Machining; Yokendo Co. Ltd: Tokyo, 1994.
  • Wang, K.; Zhu, D.; Qu, N. Basic Research of Wire Electrochemical Micro-Machining. International Technology and Innovation Conference, Hangzhou, China, Nov 6–7, 2006; pp 1070–1074.
  • Zhu, D.; Wang, K.; Qu, N. S. Micro Wire Electrochemical Cutting by using In-Situ Fabricated Wire Electrode. Ann. CIRP 2007, 56(1), 241–244.
  • Schuster, R.; Kirchiner, V.; Allongue, P.; Ertl, G. Electrochemical Micromachining. Science 2000, 289, 98–101.
  • Trimmer, A. L.; Hudson, J. L.; Kock, M.; Schuster, R. Single-Step Electrochemical Machining of Complex Nanostructures with Ultrashort Voltage Pulses. Appl. Phy.s Lett. 2003, 82, 3327–3329.
  • Ma, X.; Schuster, R. Locally Enhanced Cathodoluminescence of Electrochemically Fabricated Gold Nanostructures. J. Electr. Chem. 2011, 662, 12–16.
  • Thanigaivelan, R.; Arunachalam, R. Optimization of Process Parameters on Machining Rate and Overcut in Electrochemical Micromachining using Grey Relational Analysis. J. Sci. Ind. Res. 2013, 72, 36–42.
  • Wilson, J. F. Practice and Theory of Electrochemical Machining; Wiley: New York, 1971.
  • Jackson, C.; Olsen, R. F. Shaped Tube Electrolytic Machining (STEM Drilling). SME Technical Paper, 1969; MR 69–109. Product ID: TP69PUB243.
  • Koza, J. A.; Sueptitz, R.; Uhlemann, M.; Schultz, L.; Gebert, A. Electrochemical Micromachining of a Zr-Based Bulk Metallic Glass using a Micro-Tool Electrode Technique. Intermetallics 2011, 19, 437–444.
  • Yang, Y.; Natsu, W.; Zhao, W. Realization of Eco-Friendly Electrochemical Micromachining using Mineral Water as an Electrolyte. Prec. Eng. 2011, 35, 204–213.
  • Chen, H.; Wang, Y. K.; Wang, Z. L.; Zhao, W. S. Effects of Complexing Agent on Electrochemical Micro Machining of Stainless Steel. Am. J. Nanotechnol. 2011, 2(1), 100–105.
  • Se, H. C.; Bo, H. K.; Hong, S. S.; Do, K. C.; Chong, N. C. (2013) Analysis of the Electrochemical Behaviors of WC–Co Alloy for Micro ECM. J. Mater. Process. Technol. 2013, 213, 621–630.
  • Ryu, S. H. Eco-Friendly ECM in Citric Acid Electrolyte with Microwire and Microfoil Electrodes. Int. J. Prec. Eng. Manuf. 2015, 16(2), 233–239.
  • Alakesh, M.; Anup, M. Micro-Drilling of Al/Al2O3-MMC on Developed ECMM. Proceedings of the World Congress on Engineering 2016 WCE 2016, London, UK, June 29–July 1, 2016; Vol. II.
  • Guodong, L.; Yong, L.; Quancun, K.; Hao, T. Selection and Optimization of Electrolyte for Micro Electrochemical Machining on Stainless Steel [304]. Proc. CIRP 2016, 42, 412–417.
  • Geethapriyan, T.; Kalaichelvan, K.; Muthuramalingam, T. Multi Performance Optimization of Electrochemical Micro-Machining Process Surface Related Parameters on Machining Inconel 718 using Taguchi-Grey Relational Analysis. Metall. Ital. 2016, 4, 13–19.
  • Liu, Z.; Li, A.; Li, N.; Zeng, Y. Electrochemical Machining of Micro Deep Holes by Using Micro Drill as Cathode. Micro Nanosyst. 2017, 4(4), 326–332.
  • Hocheng, H.; Sun, Y. H.; Lin, S. C.; Kao, P. S. A Material Removal Analysis of Electrochemical Machining using Flat-End Cathode. J. Mater. Process. Technol. 2003, 140, 264–268.
  • Bhattacharyya, B.; Munda, J. Experimental Investigation into Electrochemical Micromachining (EMM) Process. Int. J. Mater. Process. Technol. 2003, 140, 287–291.
  • Thanigaivelan, R.; Arunachalam, R. M.; Drukpa, P. Drilling of Micro-Holes on Copper using Electrochemical Micromachining. Int. J. Adv. Manuf. Technol. 2012, 61, 1185–1190.
  • Das, A. K.; Saha, P. Machining of Circular Micro Holes by Electrochemical Micro-Machining Process. Adv. Manuf. 2013, 1(13), 314–319.
  • Kalra, C. S.; Manna, A.; Singla, V. K. An Experimental Investigation During Micro Drilling of Hybrid Al/(Al2O3p + SiCp + Cp)-MMC on Developed ECMM Setup. 5th International and 26th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014), IIT Guwahati, Assam, India, Dec 12–14, 2014.
  • Kalra, C. S.; Kumar, V.; Manna, A. Analysis of Electrochemical Behavior on Micro-Drilling of Cast Hybrid Al/(Al2O3p + SiCp + Cp)-MMC using Micro-ECM Process. J Mater. Des. Appl. 2015, 1–13. DOI: https://doi.org/10.1177/1464420715615907.
  • Dharmalingam, S.; Marimuthu, P.; Raja, K.; Pandyrajan, R.; Surendar, S. Optimization of Process Parameters on MRR and Overcut in Electrochemical Micro Machining on Metal Matrix Composites Using Grey Relational Analysis. IJET 2014, 6(2), 519–529.
  • Venkatajalapathy, S.; Sengottuvelu, R. Micro-ECM drilling of Copper Alloy and Taguchi Optimization. Appl. Mech. Mater. 2015, 766–767, 818–824.
  • Thanigaivelan, R.; Arunachalam, R. M.; Kumar, M.; Dheeraj, B. P. Performance of Electrochemical Micromachining of Copper Through Infrared Heated Electrolyte. Mater. Manuf. Processes 2017, 1–7. DOI: https://doi.org/10.1080/10426914.2017.1279304.
  • Lu, Y.; Liu, K.; Zhao, D. Experimental Investigation on Monitoring Interelectrode Gap of ECM with Six-Axis Force Sensor. Int. J. Adv. Manuf. Techn. 2010, 55, 5–8. DOI: https://doi.org/10.1007/s00170-010-3105-5.
  • Neto, S.; Cirilo, J. Development of a Prototype of Electrochemical Machining. 17th CIRP Conference on Modelling of Machining Operations. Sintra, Portugal: Trans Tech Publications, May 12–13, 2011.
  • Ozkeskin, F. M. Feedback controlled high frequency electrochemical micromachining. 54th International Instrumentation Symposium, Pensacola Beach, FL, United states: ISA - Instrumentation, Systems, and Automation Society, May 5–8, 2008.
  • Wang, X.; Zhao, D.; Yun, N. Research on Intelligent Measurement and Control Method of Interelectrode Gap of Electrochemical Machining (ECM). China Mech. Eng. 2007, 18(23), 2860–4.
  • Balsamy-Kamaraj, A.; Dyer, R.; Sundaram, M. M. Pulse Electrochemical Micromachining of Tungsten Carbide. ASME, International Manufacturing Science and Engineering Conference (MSEC2012), University of Notre Dame, Notre Dame, IN, USA, 2012.
  • Wollenberg, G.; Schulze, H. P.; Trautmann, H. J.; Kappmeyer, G. Controlled Current Rise for Pulsed Electrochemical Machining. Proceeedings of the 15th ISEM, 2007; Pittsburgh, PA, USA, pp 335–338.
  • Min, K.; Houshang, L.; Xiuqing, F. Measurement of Electrochemical Machining Initial Gap Based on Machine Vision. Adv. Mater. Res. 2011, 230–232, 1190–1194.
  • Lu Y.; Liu, K.; Zhao, D. Experimental Investigation on Monitoring Interelectrode Gap of ECM with Six-Axis Force Sensor. Int. J. Adv. Manuf. Technol. 2011, 55(5), 565–572.
  • De-Silva, J. A.; McGeough, K. Process Monitoring of Electrochemical Micromachining. Int. J. Mater. Process. Technol. 1998, 76, 165–169.
  • Asokan, P.; Kumar, R. R.; Jeyapaul, R.; Santhi, M. Development of Multi-Objective Optimization Models for Electrochemical Machining Process. Int. J. Adv. Manuf. Technol. 2008, 39(1–2), 55–63.
  • Li, Z.; Ji, H. Machining Accuracy Prediction and Experiment Research of Blade in Electrochemical Machining Based on BP Neural Network. Joint International Conference on Modelling and Simulation, World Academic Union, Manchester, UK, May 21–22, 2009.
  • Zhiyong, L.; Hua, J. Machining Accuracy Prediction of Aeroengine Blade in Electrochemical Machining Based on BP Neural Network. International Workshop on Information Security and Application (IWISA 2009), Academy Publisher, Oulu, Finland, Nov 21–22, 2009.
  • Lu, Y.; Zhao, D.; Yun, N.; Liu, K. Fuzzy Controlling Interelectrode Gap Method of Electrochemical Machining (ECM) based on 6D Forces and Machining Current. Nanjing Hangkong Hangtian Daxue Xuebao/J. Nanjing Univ. Aeronaut. Astronaut. 2009, 41(1), 97–101.
  • Labib, A. W.; Keasberry, V. J.; Atkinson, J.; Frost, H. W. Towards Next Generation Electrochemical Machining Controllers: A Fuzzy Logic Control Approach to ECM. Expert Syst. Appl. 2011, 38(6), 7486–7493.
  • Tiwari, A.; Mandal, A.; Kumar, K. Optimization of Removal Rate in Electrochemical Machining for EN 19 using Fuzzy logic. Int. J. Appl. Eng. Res. 2015, 10(55), 3683–3688.
  • Bhattacharyya, B.; Munda, J. Experimental Investigation on the Influence of Electrochemical Machining Parameters on Machining Rate and Accuracy in Micromachining Domain. Int. J. Mach. Tools Manuf. 2003, 43, 1301–1310.
  • Mithu, M. A. H.; Fantoni, G.; Ciampi, J.; Santochi, M. On How Tool Geometry, Applied Frequency and Machining Parameters Influence Electrochemical Microdrilling. CIRP J. Manuf. Sci. Technol. 2012, 5, 202–213.
  • Malapati, M.; Reddy, M. K. Influence of Pulse Period and Duty Ratio on Electrochemical Micro Machining (EMM) Characteristics. Int. J. Mech. Eng. Appl. 2013, 1(4), 78–86.
  • Ghoshal, B.; Bhattacharyya, B. Influence of Vibration on Micro-Tool Fabrication by Electrochemical Machining. Int. J. Mach. Tools Manuf. 2013, 64, 49–59.
  • Saravanan, D.; Arularasu, M.; Ganesan, K. A Study On Electrochemical Micromachining Of Super Duplex Stainless Steel For Biomedical Filters. ARPN J. Eng. Appl. Sci. 2012, 7(5), 517–523.
  • Shiva, M.; Karthikeyan, A.; Muthukumar, P.; Babu, B.; Singh, R. R.; Surendar, S. Experimental Analysis of Aluminium Metal Matrix Composites using Electrochemical Micromachining. IJERT 2014, 3(2), 1331–1335.
  • Thanigaivelan, R.; Ranjithkumar, M.; Rohinikarthick, L.; Shahjahan, A.; Tamilarasan, B.; Gunasekaran, K. Effect of Tool Electrode Tip Shape on Machining Rate and Overcut in Electrochemical Micromachining (EMM). Int. J. Innovative Res. Sci., Eng. Tech. 2015, 4(6), 1594–1601.
  • Ghoshal, B.; Bhattacharyya, B. Vibration Assisted Electrochemical Micromachining of High Aspect Ratio Micro Features. Prec. Eng. 2015, 42, 231–241.
  • Liu, G.; Li, Y.; Kong, Q.; Tong, H. Research on ECM Process of Micro Holes with Internal Features. Prec. Eng. 2016, 47, 508–515. DOI: https://doi.org/10.1016/j.precisioneng.2016.10.006.
  • Elavenil, E.; Manikandan, S. Micro Drilling Studies on Stainless Steel SS304 using Electrochemical Micro Machining. Int. J. Innovative Res. Sci., Eng. Tech. 2016, 2(5), 36–44.
  • Goel, H.; Pandey, P. M. Performance Evaluation of Different Variants of Jet Electrochemical Micro-Drilling Process. J. Eng. Manuf. 2016, 1–14.
  • Wang, Y.; Zeng, Y.; Wang, X.; Qu, N.; Zhu, D. Liquid Membrane Electrochemical Etching: Twin Nano-Tips Fabrication for Micromachining. Int. J. Electrochem. Sci. 2016, 11, 4174–4185.
  • Colea, K. M.; Kirk, D. W.; Singh, C. V.; Thorpe, S. J. Optimizing Electrochemical Micromachining Parameters for Zr-Basedbulk Metallic Glass. J. Manuf. Processes 2017, 25, 227–234.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.