476
Views
11
CrossRef citations to date
0
Altmetric
Articles

Optimization of pressure-less microwave sintering of Ti6Al4V by response surface methodology

, &
Pages 1835-1844 | Received 22 Dec 2017, Accepted 13 Mar 2018, Published online: 22 May 2018

References

  • Zimmermann, E. A.; Schaible, E.; Bernd Gludovatz, F. N.; Schmidt, C. R.; Krause, M.; Vettorazzi, E.; Acevedo, C.; Hahn, M.; Puschel, K.; Tang, S.; Michael Amling, R. O.; Ritchie, B. B. Intrinsic Mechanical Behavior of Femoral Cortical Bone in Young, Osteoporotic and Bisphosphonate- Treated Individuals in Low- and High Energy Fracture Conditions. Nature Publishing Group 2016, 1–12. doi10.1038/srep21072
  • Hosseini, S.; Mirdamadi, S.; Porous, N. A. Ti6Al4V Scaffolds for Dental Implants: Microstructure, Mechanical, and Corrosion Behavior. Proceedings of Institute of Mechanical Engineers Part L: Journal of MateriaL: Design Application 2016, 230, 927–933. doi:10.1177/1464420715588218
  • Pramanik, A.; Problems and Solutions in Machining of Titanium Alloys. International Journal of Advanced Manufacturing Technology 2014, 70, 919–928. doi:10.1007/s00170-013-5326-x
  • Hussain, M.; Kumar, V.; Mandal, V.; Singh, P. K.; Kumar, P.; Das, A. K. Development of cBN Reinforced Ti6Al4V MMCs Through Laser Sintering and Process Optimization. Materials and Manufacturing Processes 2017, 32, 1667–1677. doi:10.1080/10426914.2017.1303152
  • Armendia, M.; Osborne, P.; Garay, A.; Belloso, J.; Turner, S.; Arrazola, P. J. Influence of Heat Treatment on the Machinability of Titanium Alloys. Materials and Manufacturing Processes 2012, 27, 457–461. doi:10.1080/10426914.2011.585499
  • Wang, M.; Lin, X.; Huang, W. Laser Additive Manufacture of Titanium Alloys. Materials Technology 2016, 31(2), 90–97. doi:10.1179/1753555715Y.0000000079
  • Li, R.; Shi, Y.; Liu, J.; Xie, Z.; Wang, Z. Selective Laser Melting W-10 wt.% Cu Composite Powders. International Journal of Advanced Manufacturing Technology 2010, 48, 597–605. doi:10.1007/s00170-009-2304-4
  • Thuault, A.; Savary, E.; Bazin, J.; Marinel, S. Microwave Sintering of Large Size Pieces with Complex Shape. Journal of Material Processing Technology 2014, 214, 470–476. doi:10.1016/j.jmatprotec.2013.09.030
  • Wang, C.; Zhang, Y.; Xiao, S.; Chen, Y. Sintering Densification of Titanium Hydride Powders. Materials and Manufacturing Processes 2017, 32, 517–522. doi:10.1080/10426914.2016.1244833
  • Rajadurai, M.; Raja Annamalai, A. Effect of Various Sintering Methods on Microstructures and Mechanical Properties of Titanium and Its Alloy (Ti–al–V–X): A Review. Russian Journal of Non-Ferrous Metals 2017, 58, 434–448. doi:10.3103/S1067821217040162
  • Ayyappadas, C.; Raja Annamalai, A.; Agrawal, D. K.; Muthuchamy, A. Conventional and Microwave Assisted Sintering of Copper-Silicon Carbide Metal Matrix Composites: A Comparison. Metallurgical Research & Technology 2017, 114(5), 10. doi:10.1051/metal/2017033
  • Meunier, C.; Zuo, F.; Peillon, N.; Saunier, S.; Marinel, S. Goeuriot D In Situ Study on Microwave Sintering of ZTA Ceramic: Effect of ZrO2 Content on Densification,Hardness, and Toughness. Journal of the American Ceramic Society 2017, 100(3), 929–936.
  • Luo, S. D.; Qian, M. Microwave Processing of Titanium and Titanium Alloys for Structural, Biomedical and Shape Memory Applications: Current Status and Challenges. Materials and Manufacturing Processes 2016, 1–15. doi10.1080/10426914.2016.1257800
  • Singh, S.; Gupta, D.; Jain, V.; Sharma, A. K. Microwave Processing of Materials and Applications in Manufacturing Industries: A Review. Materials and Manufacturing Processes 2015, 30, 1–29. doi:10.1080/10426914.2014.952028
  • Mandal, A. K.; Sen, R. An Overview on Microwave Processing of Material: A Special Emphasis on Glass Melting. Materials and Manufacturing Processes 2017, 32, 1–20. doi:10.1080/10426914.2016.1151046
  • Singh, S.; Gupta, D.; Jain, V. Microwave Melting and Processing of Metal-ceramic Composite Castings. Proceedings of Institute of Mechanical Engineers Part B: Journal of Engineer Manufacture 2016, 139(6), 1–9. doi:10.1177/0954405416666900
  • Sato, M.; Fukusima, H.; Ozeki, F.; Hayasi, T.; Saito, Y.; Takayama, S.;, et al. Experimental Investigation of Mechanism of Microwave Heating in Powder Metals. Infrared and Millimeter Waves, 2004 and 12th International Conference on Terahertz Electronics, 2004. Conference Digest of the 2004 Joint 29th International Conference 2004, 50, 831–842. doi:10.1109/ICIMW.2004.1422352.
  • Roy, R.; Agrawal, D.; Cheng, J.; Gedevanlshvili, S. Full Sintering of Powdered-metal Bodies in a Microwave Field. Nature 1999, 399, 668–670. doi:10.1038/21390
  • Marceloa, T.; Mascarenhas, J.; Oliveira, F. A. C. Microwave Sintering - A Novel Approach to Powder Technology. Material Science Forum 2010, 636, 946–951. doi:10.4028/www.scientific.net/MSF.636-637.946
  • Luo, S. D.; Guan, C. L.; Yang, Y. F.; Schaffer, G. B.; Qian, M. Microwave Heating, Isothermal Sintering, and Mechanical Properties of poWder Metallurgy Titanium and Titanium Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 2013, 44, 1842–1851. doi:10.1007/s11661-012-1529-2
  • Imam, A. M.; Feng, J.; Rock, B. Y.; Fliflet, A. W. Processing of Titanium and its Alloys by Microwave Energy. Advanced Materials Research 2014, 1019, 11–18. doi:10.4028/www.scientific.net/AMR.1019.11
  • Choy, M. T.; Tang, C. Y. Effect of Porosity on Compressive Yield Strength of Microwave Sintered Titanium Components. Key Engineering Materials 2014, 626, 97–102. doi:10.4028/www.scientific.net/KEM.626.97
  • Myers, R. H.; Montgomery, D. C. Response Surface Methodology: Process and Product in Optimization Experiments, U. D.; 4th. , John Wiley & Sons, Inc.: New York, NY, USA, 2009; 24.
  • Kang, S.-J. L.; Sintering Densification,Grain Growth,And Microstructure. Elsevier Butterworth-Heinemann Linacre House: Oxford, UK, 2005, 9–18. doi:10.1016/B978-075066385-4/50009-1
  • Yan, Y.; Nash, G. L.; Nash, P. Effect of Density and Pore Morphology on Fatigue Properties of Sintered Ti-6Al-4V. International Journal of Fatigue 2013, 55, 81–91. doi:10.1016/j.ijfatigue.2013.05.015
  • Burke, J. E.; Recrystallization and Sintering in Ceramics BT - Sintering Key Papers. Sōmiya, S.; Moriyoshi, Y. editors., Dordrecht: Springer Netherlands. 1990, 17–38. doi:10.1007/978-94-009-0741-6_2
  • Petzow, G.; Exner, H. E. Particle Rearrangement in Solid State Sintering BT - Sintering Key Papers. Sōmiya, S.; Moriyoshi, Y. editors., Dordrecht: Springer Netherlands. 1990, 639–655. doi:10.1007/978-94-009-0741-6_40
  • Yan, M.; Microstructural Characterization of As-sintered Titanium and Titanium Alloys. In Titanium Powder Metallurgy. Elsevier Oxford: UK, 2015; 555–578. doi:10.1016/B978-0-12-800054-0.00029-0
  • Jia, H.; Yinyin, L.; Duoqi, S.; Xiaoguang, Y.; Huichen, Y.; Pengtao, Z. Experimental Investigation on HCF Strength Affected by Predamage from LCF of a Near Alpha Titanium Alloy. Journal of Materials Research 2014, 29, 2748–2755. doi:10.1557/jmr.2014.309

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.