481
Views
50
CrossRef citations to date
0
Altmetric
Articles

Bio-inspired low elastic biodegradable Mg-Zn-Mn-Si-HA alloy fabricated by spark plasma sintering

ORCID Icon, , , &
Pages 357-368 | Received 27 Dec 2017, Accepted 02 Jul 2018, Published online: 05 Sep 2018

References

  • Natarajan, S.;. Biomimetic, Bioresponsive, and Bioactive Materials edited by Matteo Santin and Gary J. Phillips. Mater. Manuf. Processes 2016, 31(7), 976–977. doi:10.1080/10426914.2015.1059095.
  • Gao, C.; Peng, S.; Feng, P.; Shuai, C. Bone Biomaterials and Interactions with Stem Cells. Bone Res. 2017, 5, 1–33. doi:10.1038/boneres.2017.59.
  • Ekmekci, N.; Ekmekci, B. Electrical Discharge Machining of Ti6Al4V in Hydroxyapatite Powder Mixed Dielectric Liquid. Mater. Manuf. Processes 2016, 31(13), 1663–1670. doi:10.1080/10426914.2015.1090591.
  • Prakash, C.; Kansal, H. K.; Pabla, B. S.; Puri, S. Experimental Investigations in Powder Mixed Electrical Discharge Machining of Ti-35Nb-7Ta-5Zr β-Ti Alloy. Mater. Manuf. Processes 2017, 32, 274–285. doi:10.1080/10426914.2016.1198018.
  • Prakash, C.; Uddin, M. S. Surface Modification of β-phase Ti Implant by Hydroaxyapatite Mixed Electric Discharge Machining to Enhance the Corrosion Resistance and in-vitro Bioactivity. Surf. Coating Technol. 2017, 236(Part A), 134–145. doi:10.1016/j.surfcoat.2017.07.040.
  • Prakash, C.; Kansal, H. K.; Pabla, B. S.; Puri, S.; Aggarwal, A. Electric Discharge Machining a Potential Choice for Surface Modification of Metallic Implants for Orthopedics Applications: A Review. Proc. Inst. Mech. Eng. Part B: Journal of Engineering Manufacture 2016, 230(2), 331–353. doi:10.1177/0954405415579113.
  • Sandlöbes, S.; Friák, M.; Korte-Kerzel, S.; Pei, Z.; Neugebauer, J.; Raabe, D. A Rare-Earth Free Magnesium Alloy with Improved Intrinsic Ductility. Sci. Rep. 2017, 7(10458), 1–7. doi:10.1038/s41598-017-10384-0.
  • Biber, R.; Pauser, P.; Geßlein, M.; Bail, H. J. Magnesium-Based Absorbable Metal Screws for Intra-Articular Fracture Fixation. Case Rep. Orthopedics 2016, ID 9673174. doi:10.1155/2016/9673174.
  • Draxler, J.; Martinelli, E.; Weinberg, A. M.; Zitek, A.; Irrgeher, J.; Meischel, M.; Stanzl-Tschegg, S. E.; Mingler, B.; Prohaska, T. The Potential of Isotopically Enriched Magnesium to Study Bone Implant Degradation in vivo. Acta Biomater. 2017, 51, 526–536.
  • Liu, L.; Koo, Y.; Collins, B.; Xu, Z.; Sankar, J.; Yun, Y. Biodegradability and Platelets Adhesion Assessment of Magnesium-Based Alloys using a Microfluidic System. Plos One 2017, 12(8), e0182914. doi:10.1371/journal.pone.0182914.
  • Agarwal, S.; Curtin, J.; Duffy, B.; Jaiswal, S. Biodegradable Magnesium Alloys for Orthopaedic Applications: A Review on Corrosion, Biocompatibility and Surface modifications. ACS Biomater. Sci. C, Mater. Biol. Appl. 2016, 68, 948–963. doi:10.1016/j.msec.2016.06.020.
  • Emily, K.; Brooks,; Ehrensberger, M. T. Bio-Corrosion of Magnesium Alloys for Orthopaedic Applications. J. Funct. Biomater. 2017, 8(3), 38. doi:10.3390/jfb8030038.
  • Uddin, M. S.; Hall, C.; Murphy, P. Surface Treatments for Controlling Corrosion Rate of Biodegradable Mg and Mg-Based Alloy Implants. Sci. Technol. Adv. Mater. 2015, 16, 053501.
  • Uddin, M. S.; Rosman, H.; Hall, C.; Murphy, P. Enhancing the Corrosion Resistance of Biodegradable Mg-Based Alloy by Machining-Induced Surface Integrity: Influence of Machining Parameters on Surface Roughness and Hardness. Int. J. Adv. Manuf. Technol. 2017, 90, 2095–2108. doi:10.1007/s00170-016-9536-x.
  • Uddin, M. S.; Hall, C.; Hooper, R.; Charrault, E.; Murphy, P.; Santos, V. Finite Element Analysis of Surface Integrity in Deep Ball-Burnishing of a Biodegradable AZ31B Mg Alloy. Metals 2018, 8, 136. doi:10.3390/met8020136.
  • Prakash, C.; Singh, S.; Pabla, B. S.; Uddin, M. S. Synthesis, Characterization, Corrosion and Bioactivity Investigation of Nano-HA Coating Deposited on Biodegradable Mg-Zn-Mn Alloy. Surf. Coat. Tech. 2018, 346, 9–18. doi:10.1016/j.surfcoat.2018.04.035.
  • Cho, D. H.; Lee, B. W.; Park, J. Y.; Cho, K. M.; Park, I. K. Effect of Mn Addition on Corrosion Properties of Biodegradable Mg-4Zn-0.5Ca-xMn Alloys. J. Alloys Compd. 2017, 695, 1166–1174. doi:10.1016/j.jallcom.2016.10.244.
  • Mohamed, H. I.; Moussa, M. E.; Waly, M. A.; Al-Ganainy, G. S.; Ahmed, A. B.; Talaat, M. S. Effect of Adding Sb on Microstructure, Mechanical Properties and in vitro Degradation Behavior of as Cast Mg-4wt% Zn Alloy for Medical Application. J. Surf. Eng. Mater. Adv. Technol. 2017, 7, 69–85. doi:10.4236/jsemat.2017.74007.
  • Wu, J.; Zhao, D.; Ohodnicki, J.; Lee, B.; Roy, A.; Yao, R.; Chen, S.; Dong, Z.; Heineman, W.; Kumta, P. N. In vitro and in vivo Evaluation of Multi-Phase Ultra-High Ductility Mg-Li-Zn Alloys for Cardiovascular Stent Applications. ACS Biomater. Sci. Eng. 2017. doi:10.1021/acsbiomaterials.7b00854.
  • NCh., K.; Chaitanya, C. S.; Rao, R. N. Abrasive Grit Size Effect on Wear Depth of Stir Cast Hybrid Al–Mg–Si Composites at High Stress Condition. Proc. Inst. Mech. Eng. 2017. doi:10.1177/1350650117726182.
  • Cheng, W.; Bai, Y.; Wang, L.; Wang, H.; Bian, L.; Yu, H. Strengthening Effect of Extruded Mg-8Sn-2Zn-2Al Alloy: Influence of Micro and Nano-Size Mg2Sn Precipitates. Mater. 2017, 10(7), 822. doi:10.3390/ma10070822.
  • Liu, D.; Yin, X.; Pang, X.; Hu, S.; Ding, Y. Effects of Dy, Sr and Die Casting on Microstructure, Mechanical and Corrosion Properties of Mg-Dy-Sr-Nd-Zr Alloys. J. Mater. Eng. Perform. 2017, 26(8), 3983–3992. doi:10.1007/s11665-017-2850-0.
  • Liu, W.; Zhang, J.; Zhang, Z.; Wang, D.; Xu, C.; Zong, X.; Nie, K. High-Strength Mg95Y3Zn1Ni1 Alloy with LPSO Structure Processed by Hot Rolling. Mater. Manuf. Processes 2017, 32(1), 62–68. doi:10.1080/10426914.2015.1127958.
  • Tang, C. P.; Yang, L.; Feng, D.; Deng, Y. L.; Zhang, X. M.; Jiang, Q.; Yang, L.; Hou, B. The Effect of Deep Cryogenic Treatment on the Corrosion Behavior of Mg-7Y-1.5Nd Magnesium Alloy. Metals 2017, 7(10), 427. doi:10.3390/met7100427.
  • Bian, M. Z.; Zeng, Z. R.; Xu, S. W.; Zhu, S. M.; Zhu, Y. M.; Davies, C. H. J.; Birbilis, N.; Nie, J. F. Improving Formability of Mg–Ca–Zr Sheet Alloy by Microalloying of Zn. Adv. Eng. Mater. 2016, 18, 1763–1769. doi:10.1002/adem.201600293.
  • Allameh, S. H.; Emamy, M. The Effect of Ca Content on the Microstructure, Hardness and Tensile Properties of AZ81 Mg Cast Alloy. J. Mater. Eng. Perform. 2017, 6(5), 2151–2161. doi:10.1007/s11665-017-2671-1.
  • Kuśnierczyk, K.; Basista, M. Recent Advances in Research on Magnesium Alloys and Magnesium–Calcium Phosphate Composites as Biodegradable Implant Materials. J. Biomater. Appl. 2017, 31(6), 878–900. doi:10.1177/0885328216657271.
  • Luna, M. C.; Jimenéz, E. B. M.; Horynová, M.; Gejdoš, P.; Klakurková, L.; Torre, S. D. D. L. ;.; Kaiser, J.; Čelko, L.; Phosphate, T. Magnesium Interface: Microstructure and Properties. Solid State Phenom. 2017, 258, 412–415. doi:10.4028/www.scientific.net/SSP.258.412.
  • Sopyan, I.; Gunawan,; Shah, Q. H.; Mel, M. Fabrication and Sintering Behavior of Zinc-Doped Biphasic Calcium Phosphate Bioceramics. Mater. Manuf. Processes 2016, 31(6), 713–718. doi:10.1080/10426914.2015.1048361.
  • Sultana, N.; Mokhtar, M.; Hassan, M. I.; Jin, R. M.; Roozbahani, F.; Khan, T. H. Chitosan-Based Nanocomposite Scaffolds for Tissue Engineering Applications. Mater. Manuf. Processes 2015, 30(3), 273–278. doi:10.1080/10426914.2014.892610.
  • Babaie, E.; Bhaduri, S. B. Fabrication Aspects of Porous Biomaterials in Orthopedic Applications: A Review. ACS Biomater. Sci. Eng. 2017. doi:10.1021/acsbiomaterials.7b00615.
  • Fan, S.; Jiang, W.; Li, G.; Mo, J.; Fan, Z. Fabrication and Microstructure Evolution of Al/Mg Bimetal using a Near-Net Forming process. ACS Biomater. Sci. Eng. 2017, 32, 1391–1397. doi:10.1080/10426914.2017.1328118.
  • Wan, Y.; Gao, Y.; Jiang, S.; Liu, S.; Chen, Z. Manufacturing High-Performance Mg Alloy through Hot Extrusion. ACS Biomater. Sci. Eng. 2017, 1–4. doi:10.1080/10426914.2017.1364866.
  • Vahidgolpayegani, A.; Wen, C.; Hodgson, P.; Li, Y. 2-Production Methods and Characterization of Porous Mg and Mg Alloys for Biomedical Applications. In Wen, C.;, Ed., Metallic Foam Bone: Processing, Modification and Characterization and Properties; Woodhead Publishing: Cambridge, 2016; 25–82. doi:10.1016/B978-0-08-101289-5.00002-0.
  • Shuai, C.; Yang, Y.; Wu, P.; Lin, X.; Liu, Y.; Zhou, Y.; Feng, P.; Liu, X.; Peng, S. Laser Rapid Solidification Improves Corrosion Behavior of Mg-Zn-Zr Alloy. J. Alloys Compd. 2016, 691, 961–969. doi:10.1016/j.jallcom.2016.09.019.
  • Ghasali, E.; Alizadeh, M.; Niazmand, M.; Ebadzadeh, T. Fabrication of Magnesium-boron carbide Metal Matrix Alloy by Powder Metallurgy Route: Comparison between Microwave and Spark Plasma Sintering. J. Alloys Compd. 2017, 697, 200–207.
  • Rajendra, K.; Bordia, R. K.; Kang, S. J. L.; Olevsky, E. A. Current understanding and Future Research Directions at the onset of the next Century of Sintering Science and Technology. J. Am. Ceram. Soc. 2017, 100, 2314–2352. doi:10.1111/jace.14919.
  • Lewis, G.;. Reduction in the Corrosion Rate of Magnesium and Magnesium Alloy Specimens and Implications for Plain Fully Bioresorbable Coronary Artery Stents: A Review. World J. Eng. Technol. 2016, 4, 572–597. doi:10.4236/wjet.2016.44055.
  • Senthilnathan, N.; Annamalai, A. R.; Venkatachalam, G. Activated Sintering of Tungsten Alloys through Conventional and Spark Plasma Sintering Process. Mater. Manuf. Processes 2017, 32(16), 1861–1868. doi:10.1080/10426914.2017.1328109.
  • Kennedy, S.; Kumaran, S.; Rao, T. S. Effect of Milling on Sintering Behavior of γ-TiAl by Spark Plasma Sintering. Mater. Manuf. Processes 2017, 28(8), 928–932. doi:10.1080/10426914.2013.792423.
  • Du, H.; Liu, X. W.; Li, J.; Tao, P.; Jiang, J.; Sun, R.; Fan, Z. T. Use of Spark Plasma Sintering for Fabrication of Porous Titanium Aluminide Alloys from Elemental Powders. Mater. Manuf. Processes 2016, 31(6), 725–732. doi:10.1080/10426914.2015.1048469.
  • Guo, P.; Cui, Z.; Yang, L.; Cheng, L.; Wang, W.; Xu, B. Preparation of Mg/Nano-HA Composites by Spark Plasma Sintering Method and Evaluation of different Milling Time Effects on their Microhardness, Corrosion Resistance, and Biocompatibility. Adv. Eng. Mater. 2017, 19(1), 1600294. doi:10.1002/adem.201600294.
  • Singh, B. P.; Singh, R.; Mehta, J. S.; Prakash, C. Fabrication of Biodegradable low Elastic Porous Mg-Zn-Mn-HA Alloy by Spark Plasma Sintering for Orthopaedic Applications, IOP Conference Series. Mater. Sci. Eng. 2017, 25, 012050. doi:10.1088/1757-899X/225/1/012050.
  • Liu, X.; Sun, J.; Zhou, F.; Yang, Y. H.; Chang, R.; Qiu, K.; Pu, Z.; Li, L.; Zheng, Y. Micro-alloying with Mn in Zn–mg Alloy for Future Biodegradable Metals Application. Mater. Des. 2016, 94, 95–104.
  • Lala, S.; Maity, T. N.; Singh, M.; Biswas, K.; Pradhan, S. K. Effect of Doping (Mg,Mn,Zn) on the Microstructure and Mechanical Properties of Spark Plasma Sintered Hydroxyapatites Synthesized by Mechanical Alloying. Ceram. Int. 2017, 43, 2389–2397.
  • Belov, N. A.; Naumova, E. A.; Akopyan, T. K.; Doroshenko, V. V. Phase Diagram of Al-Ca-Mg-Si System and its Application for the Design of Aluminum Alloys with High Magnesium Content. Metals 2017, 7(10), 429. doi:10.3390/met7100429.
  • Wang, H. Y.; Zhu, J. N.; Li, J. H.; Li, C.; Zha, M.; Wang, C.; Yang, Z. Z.; Jiang, Q. C. Refinement and Modification of Primary Mg2Si in an Al–20Mg2Si Alloy by a Combined Addition of Yttrium and Antimony. CrystEngComm 2017, 19, 6365–6372. doi:10.1039/C7CE01309D.
  • Chen, L.; Wang, H. Y.; Liu, K.; Wang, C.; Luo, D.; Jiang, Q. C. Growth of Mg2Si Crystals Shaped by {100} and {111} facets from Al–Mg–Si Melts in the presence of Calcium. CrystEngComm 2017, 19, 3058–3062. doi:10.1039/C7CE00404D.
  • Zhang, E.; Yang, L.; Xu, J.; Chen, H. Microstructure, Mechanical Properties and Bio-corrosion Properties of Mg–si(–ca, Zn) Alloy for Biomedical Application. Acta Biomater. 2010, 6, 1756–1762.
  • Fu, J.; Liu, K.; Duc, W.; Wang, Z.; Li, S.; Du, X. Microstructure and Mechanical Properties of the as-cast Mg-Zn-Mn-Ca Alloys, IOP Conf. Series. Mater. Sci. Eng. 2017, 182, 012053. doi:10.1088/1757-899X/182/1/012053.
  • Rudinsky, S.; Hendrickx, P.; Bishop, D. P.; Brochu, M. Spark Plasma Sintering and Age Hardening of an Al–Zn–Mg Alloy Powder Blend. Mater. Sci. Eng.: A 2016, 650(5), 129–138. doi:10.1016/j.msea.2015.10.029.
  • Cao, N. Q.; Narita, K.; Kobayashi, E.; Sato, T. Evolution of the Microstructure and Mechanical Properties of Mg-matrix in situ Alloys during Spark Plasma Sintering. J. Powder Metall. 2016, 59(5), 302–307. doi:10.1080/00325899.2016.1219087.
  • Narita, K.; Kobayashi, E.; Sato, T.; Behavior, S. Mechanical Properties of Magnesium/β-Tricalcium Phosphate Composites Sintered by Spark Plasma Sintering. Mater. Trans. 2016, 57(9), 1620–1627. doi:10.2320/matertrans.L-M2016827.
  • Zheng, B.; Ertorer, O.; Li, Y.; Zhou, Y.; Mathaudhu, S. N.; Tsao, C. Y. A.; Laverni, J. E. High Strength, Nano-Structured Mg–Al–Zn Alloy. Mater. Sci. Eng.: A 2011, 528, 2180–2191. doi:10.1016/j.msea.2010.11.073.
  • Prakash, C.; Kansal, H. K.; Pabla, B. S.; Puri, S. Multi-objective Optimization of Powder Mixed Electric Discharge Machining Parameters for Fabrication of Biocompatible Layer on β-Ti Alloy using NSGA-II Coupled with Taguchi based Response Surface Methodology. J. Mech. Sci. Technol. 2016, 30(9), 4195–4204. doi:10.1007/s12206-016-0831-0.
  • Oliver, W. C.; Phar, G. M. An Improved Technique for Determining Hardness and Elastic Modulus using Load and Displacement Sensing Indentation Experiments. J. Mater. Res. 1992, 7(6), 1564–1583. doi:10.1557/JMR.1992.1564.
  • Sunil, B. R.; Ganapathy, C.; Kumar, T. S.; Chakkingal, U. Processing and Mechanical Behavior of Lamellar Structured Degradable Magnesium–Hydroxyapatite Implants. J. Mech. Behav. Biomed. Mater. 2014, 40, 178–189.
  • Koo, S. M.; Kim, K. R.; Yang, Y. S.; Kim, H. S.; Hwang, D. Y. Effect of Degassing Parameters on the Microstructure and Properties of Nanocrystalline Magnesium Alloys in Spark Plasma Sintering. J. Korean. Phys. Soc. 2016, 69(3), 354–360. doi:10.3938/jkps.69.354.
  • Zhang, E. L.; Yang, L. Microstructure, Mechanical Properties and Bio-corrosion Properties of Mg–Zn–Mn–Ca Alloy for Biomedical Application. Mater. Sci. Eng.: A 2008, 497, 111–118.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.