328
Views
9
CrossRef citations to date
0
Altmetric
Articles

Effect of cleaning gas stream on products in selective laser melting

ORCID Icon, ORCID Icon &
Pages 455-461 | Received 17 Apr 2018, Accepted 10 Jul 2018, Published online: 07 Nov 2018

References

  • Zhang, Y.; Wu, L.; Guo, X.; Stephen Kane, S.; Deng, Y.; Jung, Y.-G.; Lee, J.-H.; Zhang, J. Additive Manufacturing of Metallic Materials: A Review. J. Mater. Eng. Perform. 2018, 27, 1–13. doi:10.1007/s11665-017-2747-y.
  • Srivatsan, T. S.; Sudarshan, T. S. Additive Manufacturing: Innovations, Advances, and Applications; CRC Press: Boca Raton, 2016.
  • Lykov, P.-A.; Baitimerov, R.-M.; Panfilov, A.-V.; Guz, A.-O. The Manufacturing of TiAl6V4 Implants Using Selective Laser Melting Technology. IOP Conf. Ser. Mat. Sci. Eng. 2017, 248, 012004. doi:10.1088/1757-899X/248/1/012004.
  • Amato, K.-N.; Gaytan, S.-M.; Murr, L.-E.; Martinez, E.; Shindo, P.-W.; Hernadez, J.; Collins, S.; Medina, F. Microstructures and Mechanical Behavior of Inconel 718 Fabricated by Selective Laser Melting. Acta Mater. 2012, 60, 2229–2239. doi:10.1016/j.actamat.2011.12.032.
  • Pauly, S.; Löber, L.; Petters, R.; Stoica, M.; Kühn, U.; Eckert, J. Processing Metallic Glasses by Selective Laser Melting. Mater. Today 2013, 16, 37–41. doi:10.1016/j.mattod.2013.01.018.
  • Jung, H.-Y.; Choi, S.-J.; Prashanth, K.-G.; Stoica, M.; Scudino, S.; Yi, S.; Kühn, U.; Kim, D.-H.; Kim, K.-B.; Eckert, J. Fabrication of Fe-based Bulk Metallic Glass by Selective Laser Melting: A Parameter Study. Mater. Des. 2015, 86, 703–708. doi:10.1016/j.matdes.2015.07.145.
  • Ponnusamy, P.; Masood, S.-H.; Ruan, D.; Palanisamy, S.; Mohamed, O.-A. Statistical Analysis of Porosity of 17-4PH Alloy Processed by Selective Laser Melting. IOP Conf. Ser. Mat. Sci. Eng. 2017, 220, 012001. doi:10.1088/1757-899X/220/1/012001.
  • Prashanth, K.-G.; Scudino, S.; Maity, T.; Das, J.; Eckert, J. Is the Energy Density a Reliable Parameter for Materials Synthesis by Selective Laser Melting? Mater. Res. Lett. 2017, 5, 386–390. doi:10.1080/21663831.2017.1299808.
  • Prashanth, K.-G.; Scudino, S.; Eckert, J. Defining the Tensile Properties of Al-12Si Parts Produced by Selective Laser Melting. Acta Mater. 2017, 126, 25–35. doi:10.1016/j.actamat.2016.12.044.
  • Maity, T.; Chawake, N.; Kim, J.-T.; Eckert, J.; Prashanth, K.-G. Anisotropy in Local Microstructure – Does it Affect the Tensile Properties of the SLM Samples? Manuf. Lett. 2018, 15, 33–37. doi:10.1016/j.mfglet.2018.02.012.
  • Chen, H.; Gu, D. Effect of Metallurgical Defect and Phase Transition on Geometric Accuracy and Wear Resistance of Iron-based Parts Fabricated by Selective Laser Melting. J. Mater. Res. 2016, 31, 1477–1490. doi:10.1557/jmr.2016.132.
  • Alsalla, -H.-H.; Smith, C.; Hao, L. Effect of Build Orientation on the Surface Quality, Microstructure and Mechanical Properties of Selective Laser Melting 316L Stainless Steel. Rapid Prototy. J. 2018, 24, 9–17. doi:10.1108/RPJ-04-2016-0068.
  • Sun, Y.; Aindow, M.; Hebert, R. Microstructural Study of the Heat-treated 17-4PH Stainless Steel Parts Prepared by Selective Laser Melting. Microsc. Microanal. 2017, 23, 2252–2253. doi:10.1017/S1431927617011928.
  • Davidson, K.; Singamneni, S. Selective Laser Melting of Duplex Stainless Steel Powders: An Investigation. Mater. Manuf. Processes 2016, 31, 1543–1555. doi:10.1080/10426914.2015.1090605.
  • Tathgir, S.; Bhattacharya, T.; Activated-TIG, A. Welding of Different Steels: Influence of Various Flux and Shielding Gas. Mater. Manuf. Processes 2015, 31, 335–342. doi:10.1080/10426914.2015.1037914.
  • Tathgir, S. T.; Bhattacharya, A.; Bera, T.-K. Influence of Current and Shielding Gas in TiO2 Flux Activated TIG Welding on Different Graded Steels. Mater. Manuf. Processes 2015, 30, 1115–1123. doi:10.1080/10426914.2014.973591.
  • Sibillano, T.; Ancona, A.; Berardi, V.; Schingaro, E.; Basile, G.; Lugarà, P.-M. A Study of the Shielding Gas Influence on the Laser Beam Welding of AA5083 Aluminum Alloys by In-process Spectroscopic Investigation. Opt. Lasers Eng. 2006, 44, 1039–1051. doi:10.1016/j.optlaseng.2005.09.002.
  • Kuo, T.-Y.; Lin, Y.-D. Effects of Different Shielding Gases and Power Waveforms on Penetration Characteristics and Porosity Formation in Laser Welding of Inconel 690 Alloy. Mater. Trans. 2007, 48, 219–226. doi:10.2320/matertrans.48.219.
  • EOS GmbH, M 400-4. The Ultra-fast Quad-laser System with a Large Building Volume. https://www.eos.info/systems_solutions/eos-m-400-4 (accessed March, 2018).
  • American Society for Testing and Materials (ASTM). ASTM-F136-12a Standard Specification for Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401). ASTM Int. 2013, 6–10. doi:10.1520/F0136-12A.2.
  • Agapovichev, A.-V.; Kokareva, -V.-V.; Smelov, V.-G.; Sotov, A.-V. Selective Laser Melting of Titanium Alloy: Investigation of Mechanical Properties and Microstructure. IOP Conference Series: Mater. Sci. Eng. 2016, 156, 012031. doi:10.1088/1757-899X/156/1/012031.
  • Agius, D.; Kourousis, K.-I.; Wallbrink, C. A Review of the As-built SLM Ti-6Al-4V Mechanical Properties towards Achieving Fatigue Resistant Designs. Metals 2018, 8, 75. doi:10.3390/met8010075.
  • Karel, L.; Antonio, C.; Dries, B.; Brecht, V.-H. Fatigue Life of Additively Manufactured Ti6Al4V Scaffolds under Tension-Tension, Tension-Compression and Compression-Compression Fatigue Load. Sci. Rep. 2018, 8, 4957. doi:10.1038/s41598-018-23414-2.
  • Zhao, C.; Fezzaa, K.; Cunningham, R.-W.; Wen, H.; Carlo, F.-D.; Chen, L.; Anthony, D.-R.; Sun, S. Real-time Monitoring of Laser Powder Bed Fusion Process using High-speed X-ray Imaging and Diffraction. Sci. Rep. 2017, 7, 3602. doi:10.1038/s41598-017-03761-2.
  • Hiroshi, N.; Yousuke, K.; Koji, N.; Seiji, K. Elucidation of Melt Flows and Spatter Formation Mechanisms during High Power Laser Welding or Pure Titanium. J. Laser Appl. 2015, 27, 032012. doi:10.2351/1.4922383.
  • Mathews, M.-J.; Guss, G.; Khairallah, S.-A.; Rubenchik, A.-M.; Depond, P.-J.; King, W.-E. Denudation of Metal Powder Layers in Laser Powder Bed Fusion Process. Acta Materilialia 2016, 114, 33–42. doi:10.1016/j.actamat.2016.05.017.
  • Simonelli, M.; Tuck, C.; Aboulkhair, N.-T.; Maskery, I.; Ashcroft, I.; Wildman, R.-D.; Hague, R. A Study on the Laser Spatter and the Oxidation Reaction during Selective Laser Melting of 316L Stainless Steel, Al-Si10-Mg, and Ti-6Al-4V. Metall. Mater. Trans. A 2015, 46, 3842–3851. doi:10.1007/s11661-015-2882-8.
  • Clark, D.; Jepson, K.-S.; Lewis, G.-I. A Study of the Titanium-Aluminum Systems up to 40 at.-% Aluminum. Journal Inst. Metals 1963, 91, 197–203.
  • Khan, M.; Dickens, P. Selective Laser Melting (SLM) of Gold (Au). Rapid Prototy. J. 2012, 18, 81–94. doi:10.1108/13552541211193520.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.