372
Views
18
CrossRef citations to date
0
Altmetric
Articles

Development of an intelligent model to optimize heat-affected zone, kerf, and roughness in 309 stainless steel plasma cutting by using experimental results

ORCID Icon, , , ORCID Icon, &
Pages 345-356 | Received 06 Mar 2018, Accepted 13 Aug 2018, Published online: 08 Nov 2018

References

  • Dai, W.; Li, J.; Zheng, Z.; Huang, Q. Surface Finishing by Atmospheric Pressure Micro Plasma Beam Irradiation. Mater. Manuf. Process 2016, 31(9), 1216–1222.
  • Yamaguchi, Y.; Katada, Y.; Itou, T.; Uesugi, Y.; Tanaka, Y.; Ishijima, T. Experimental Study of Magnetic Arc Blow For Plasma Arc Cutting. Weld. Int. 2015, 29(10), 745–753.
  • Khani, S.; Farahnakian, M.; Razfar, M. R. Experimental Study on Hybrid Cryogenic and Plasma-Enhanced Turning of 17-4PH Stainless Steel. Mater. Manuf. Process. 2015, 30(7), 868–874.
  • Anakhov, S. V.; Pykin, Y. A.; Matushkin, A. V. Analysis of the Acoustic Safety of Narrow-Jet Metal-Cutting Plasma Torches. Weld. Int. 2017, 31(1), 48–51.
  • Nemchinsky, V. Temperature Created By a Moving Heat Source That Heats and Melts the Metal Plate (Plasma Arc Cutting). J. Heat Transfer 2016, 138(12), 122301.
  • Klimpel, A.; Cholewa, W.; Bannister, A.; Luksa, K.; Przystałka, P.; Rogala, T.; Martín-Meizoso, A. Experimental Investigations of the Influence of Laser Beam and Plasma Arc Cutting Parameters on Edge Quality of High-Strength Low-Alloy (HSLA) Strips and Plates. Int. J. Adv. Manuf. Technol. 2017, 1–15. doi:10.1007/s00170-017-0119-2.
  • Lazarevic, A.; Lazarevic, D. Investigations of Material Hardness and Structural changes in the Heat-Affected Zone During Plasma Cutting. Weld. World 2017, 61(6), 1069–1075.
  • Odnobokova, M.; Belyakov, A.; Enikeev, N.; Molodov, D. A.; Kaibyshev, R. Annealing Behavior of a 304L Stainless Steel Processed by Large Strain Cold and Warm Rolling. Mater. Sci. Eng. A. 2017, 689, 370–383.
  • Dutta, R. S.; Singh, K.; Vishwanadh, B.; Dey, G. K. Aluminide Formation on Alloy 800 by Plasma Spraying and Heat Treatment. Mater. Manuf. Processes 2017, 1–6. doi:10.1080/10426914.2017.1317794.
  • Krajcarz, D. Comparison Metal Water Jet Cutting With Laser and Plasma Cutting. Procedia Eng. 2014, 69, 838–843.
  • Mullick, S.; Madhukar, Y. K.; Roy, S.; Kumar, S.; Shukla, D. K.; Nath, A. K. Development and Parametric Study of a Water-Jet Assisted Underwater Laser Cutting Process. Int. J. Mach. Tools Manuf. 2013, 68, 48–55.
  • Santhanakumar, M.; Adalarasan, R.; Rajmohan, M. Parameter Design in Plasma Arc Cutting of Galvanised Iron Sheet Using Desirability Function-Based Response Surface Methodology. Int. J. Manuf. Res. 2015, 10(3), 199–214.
  • Park, M.; Hirata, Y. Research on Generation of Micro-Plasma Arc and Its Power Intensity. Weld. Int. 2017, 31(4), 284–290.
  • Nemchinsky, V. A.; Severance, W. S. What We Know and What We Do Not Know About Plasma Arc Cutting. J. Phys. D 2006, 39(22), R423. doi:10.1088/0022-3727/39/22/R01.
  • Hoult, A. P.; Pashby, I. R.; Chan, K. Fine Plasma Cutting of Advanced Aerospace Materials. J. Mater. Process. Technol. 1995, 48(1–4), 825–831.
  • Çelik, Y. H. Investigating the Effects of Cutting Parameters on Materials Cut in CNC Plasma. Mater. Manuf. Processes 2013, 28(10), 1053–1060.
  • Masoudi, S.; Sima, M.; Tolouei-Rad, M. A. J. I. D. Comparative Study of ANN and ANFIS Models for Predicting Temperature in Machining. J. Eng. Sci. Technol. 2018, 13(1), 211–225.
  • Chandrasekhar, N.; Ragavendran, M.; Ravikumar, R.; Vasudevan, M.; Murugan, S. Optimization of Hybrid Laser–TIG Welding of 316LN Stainless Steel Using Genetic Algorithm. Mater. Manuf. Processes 2017, 1–7. doi:10.1080/10426914.2017.1317793.
  • Kalita, K.; Shivakoti, I.; Ghadai, R. K. Optimizing Process Parameters For Laser Beam Micro-Marking Using Genetic Algorithm and Particle Swarm Optimization. Mater. Manuf. Processes 2017, 1–8. doi:10.1080/10426914.2017.1303156.
  • Da Silva, R. H. L.; Da Silva, M. B.; Hassui, A. A Probabilistic Neural Network Applied in Monitoring Tool Wear in the End Milling Operation Via Acoustic Emission and Cutting Power Signals. Mach. Sci. Technol. 2016, 20(3), 386–405. doi:10.1080/10910344.2016.1191026.
  • Yan, D.; Zhou, Q.; Wang, J.; Zhang, N. Bayesian Regularisation Neural Network Based on Artificial Intelligence Optimisation. Int. J. Prod. Res. 2017, 55(8), 2266–2287. doi:10.1080/00207543.2016.1237785.
  • Jafarian, F.; Umbrello, D.; Golpayegani, S.; Darake, Z. Experimental Investigation to Optimize Tool Life and Surface Roughness in Inconel 718 Machining. Mater. Manuf. Process. 2016, 31(13), 1683–1691.
  • Shah, K.; Kumar, R.; Sahoo, S.; Pais, R. S.; Chakrabarti, D.; Chakraborti, N. Optimization of Annealing Cycle Parameters of Dual Phase and Interstitial Free Steels by Multiobjective Genetic Algorithms. Mater. Manuf. Processes 2017, 32(10), 1201–1208. doi:10.1080/10426914.2016.1257134.
  • Cus, F.; Balic, J. Optimization of Cutting Process by GA Approach. Robotics Comput.-Integr. Manuf. 2003, 19(1–2), 113–121.
  • Gen, M.; Lin, L. Multiobjective Evolutionary Algorithm for Manufacturing Scheduling Problems: State-of-the-Art Survey. J. Intell. Manuf. 2014, 25(5), 849–866.
  • Tansel, I. N.; Gülmez, S.; Demetgul, M.; Aykut, Ş. Taguchi Method–GONNS Integration: Complete Procedure Covering from Experimental Design to Complex Optimization. Expert Syst. Appl. 2011, 38(5), 4780–4789.
  • Chen, J. C.; Li, Y.; Cox, R. A. Taguchi-Based Six Sigma Approach to Optimize Plasma Cutting Process: An Industrial Case Study. Int. Adv. Manuf. Technol. 2009, 41(7), 760–769. DOI:10.1007/s00170-008-1526-1.
  • Radovanovic, M.; Madic, M. Modeling the Plasma Arc Cutting Process using ANN. Revista De Tehnologii Neconventionale 2011, 15(4), 43.
  • Özek, C.; Çaydaş, U.; Ünal, E. A Fuzzy Model for Predicting Surface Roughness in Plasma arc Cutting of AISI 4140 Steel. Mater. Manuf. Processes 2012, 27(1), 95–102.
  • Maity, K. P.; Bagal, D. K. Effect of Process Parameters on Cut Quality of Stainless Steel of Plasma arc Cutting using Hybrid Approach. Int. J. Adv. Manuf. Technol. 2015, 78(1–4), 161–175.
  • Aykut, Ş.; Demetgul, M.; Tansel, I. N. Selection of Optimum Cutting Condition of Cobalt-Based Superalloy with GONNS. Int. J. Adv. Manuf. Technol. 2010, 46(9–12), 957–967.
  • Gullu, A.; Atici, U. Investigation of the Effects of Plasma Arc Parameters on the Structure Variation of AISI 304 and St 52 Steels. Mater. Des. 2006, 27(10), 1157–1162. DOI:10.1016/j.matdes.2005.02.014.
  • Salonitis, K.; Vatousianos, S. Experimental Investigation of the Plasma arc Cutting Process. Procedia CIRP 2012, 3, 287–292.
  • Zajac, A.; Pfeifer, T. Restricting the Heat-Affected Zone During the Plasma Cutting of High-Alloy Steels. Weld. Int. 2006, 20(1), 5–9.
  • Adalarasan, R.; Santhanakumar, M.; Rajmohan, M. Application of Grey Taguchi-Based Response Surface Methodology (GT-RSM) for Optimizing the Plasma Arc Cutting Parameters of 304L Stainless Steel. Int. J. Adv. Manuf. Technol. 2015, 78(5–8), 1161–1170.
  • Aamir, M.; Liao, Q.; Hong, W.; Xun, Z.; Song, S.; Sajid, M. Transient Heat Transfer Behavior of Water Spray Evaporative Cooling on a Stainless Steel Cylinder With Structured Surface for Safety Design Application in High Temperature Scenario. Heat Mass Transfer 2017, 53(2), 363–375.
  • Ramakrishnan, S.; Shrinet, V.; Polivka, F. B.; Kearney, T. N.; Koltun, P. Influence of Gas Composition on Plasma Arc Cutting of Mild Steel. J. Phys. D. 2000, 33(18), 2288. doi:10.1088/0022-3727/33/18/313.
  • Teulet, P.; Girard, L.; Razafinimanana, M.; Gleizes, A.; Bertrand, P.; Camy-Peyret, F.; Richard, F. Experimental Study of An Oxygen Plasma Cutting Torch: II. Arc–Material Interaction, Energy Transfer and Anode Attachment. J. Phys. D. 2006, 39(8), 1557. doi:10.1088/0022-3727/39/8/015.
  • Jafarian, F.; Amirabadi, H.; Fattahi, M. Improving Surface Integrity in Finish Machining of Inconel 718 Alloy Using Intelligent Systems. Int. J. Adv. Manuf. Technol. 2014, 71(5–8), 817–827.
  • Iso, B. 2003 9013: 2017 (E) Thermal cutting–Classification of Thermal cuts–Geometrical Product Specification and Quality Tolerances: International Organization for Standardization: Geneva.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.