271
Views
8
CrossRef citations to date
0
Altmetric
Articles

An injection molding method to prepare chitosan-zinc composite material for novel biodegradable flexible implant devices

, &
Pages 256-261 | Received 23 Mar 2018, Accepted 13 Aug 2018, Published online: 08 Nov 2018

References

  • Kassegne, S.;, et al. Electrical Impedance, Electrochemistry, Mechanical Stiffness, and Hardness Tunability in Glassy Carbon MEMS μECoG Electrodes. Microelectron. Eng. 2015, 133(C), 36–44.
  • Moreno, S.;, et al. Biocompatible Collagen Films as Substrates for Flexible Implantable Electronics. Adv. Electron. Mater. 2015, 1, 9.
  • Carrasco, F. G.; Alonso, D. D.; Niño-De-Rivera, L. Biocompatibility and Implant of a Less Invasive Intraocular Pressure Sensor. Microelectron. Eng. 2016, 159, 32–37.
  • Park, D.-W.;, et al. Graphene-based Carbon-layered Electrode Array Technology for Neural Imaging and Optogenetic Applications. Nat. Commun. 2014, 5.
  • Rosset, S.; Shea, H. R. Flexible and Stretchable Electrodes for Dielectric Elastomer Actuators. Appl. Phys. A: Mater. Sci. Process. 2013, 1–27.
  • Kim, E. G. R.;, et al. A Hybrid Silicon–parylene Neural Probe with Locally Flexible Regions. Sens. Actuators, B: Chem. 2014, 195, 416–422.
  • Kim, D.;, et al. Thin, Flexible Sensors and Actuators as ‘Instrumented’ Surgical sutures for Targeted Wound Monitoring and Therapy. Small 2012, 8(21), 3263–3268.
  • Briseno, A. L.;, et al. High‐performance Organic Single‐crystal Transistors on Flexible Substrates. Adv. Mater. 2006, 18(17), 2320–2324.
  • Someya, T.;, et al. Conformable, Flexible, Large-area Networks of Pressure and Thermal Sensors with Organic Transistor Active Matrixes. Proc. Natl. Acad. Sci. U.S.A. 2005, 102(35), 12321–12325.
  • Kushto, G. P.; Kim, W.; Kafafi, Z. H. Flexible Organic Photovoltaics using Conducting Polymer Electrodes. Appl. Phys. Lett. 2005, 86(9), 093502.
  • Gross, R. A.; Kalra, B. Biodegradable Polymers for the Environment. Science 2002, 297(5582), 803–807.
  • Li, W.;, et al. Polyaniline-poly (Styrene Sulfonate) Conducting Hydrogels Reinforced by Supramolecular Nanofibers and used as Drug Carriers with Electric-driven Release. Eur. Polym. J. 2015, 66, 513–519.
  • Liu, Y.;, et al. Flexible Organic Light Emitting Diodes Fabricated on Biocompatible Silk Fibroin Substrate. Semiconductor Sci. Technol. 2015, 30(10), 104004.
  • Fortunato, E.;, et al. High-performance Flexible Hybrid Field-effect Transistors based on Cellulose Fiber Paper. IEEE Electron. Device Lett. 2008, 29(9), 988–990.
  • Loo, Y.-L.;, et al. Interfacial Chemistries for Nanoscale Transfer Printing. J. Am. Chem. Soc. 2002, 124(26), 7654–7655.
  • Hines, D. R.;, et al. Transfer Printing Methods for the Fabrication of Flexible Organic Electronics. J. Appl. Phys. 2007, 101(2), 024503.
  • Sirringhaus, H.;, et al. High-resolution Inkjet Printing of All-polymer Transistor Circuits. Science 2000, 290(5499), 2123–2126.
  • de Gans, B. ‐. J.; Duineveld, P. C.; Schubert, U. S. Inkjet Printing of Polymers: State of the Art and Future Developments. Adv. Mater. 2004, 16(3), 203–213.
  • Cho, C.-L.;, et al. Fully Inkjet-printing of Metal-polymer-metal Multilayer on a Flexible Liquid Crystal Polymer Substrate. Surf. Coat. Technol. 2017, 320, 568–573.
  • Kao, Hsuan-Ling, et al. Inkjet Printed Series-fed Two-dipole antenna Comprising a Balun Filter on Liquid Crystal Polymer Substrate. IEEE Trans. Compon. Packag. Manuf. Technol. 2014, 4(7), 1228–1236.
  • Ko, S. H.;, et al. All-inkjet-printed Flexible Electronics Fabrication on a Polymer Substrate by Low-temperature High-resolution Selective Laser Sintering of Metal Nanoparticles. Nanotechnology 2007, 18(34), 345202.
  • Rinaudo, M.;. Chitin and Chitosan: Properties and Applications. Prog. Polym. Sci. 2006, 31(7), 603–632.
  • Dash, M.;, et al. Chitosan—A Versatile Semi-synthetic Polymer in Biomedical Applications. Prog. Polym. Sci. 2011, 36(8), 981–1014.
  • Burch, R. E.; Hahn, H. K. J.; Sullivan, J. F. Newer Aspects of the Roles of Zinc, Manganese, and Copper in Human Nutrition. Clin. Chem. 1975, 21(4), 501–520.
  • Yin, L.;, et al. Dissolvable Metals for Transient Electronics. Adv. Funct. Mater. 2014, 24(5), 645–658.
  • Rhazi, M.;, et al. Influence of the Nature of the Metal Ions on the Complexation with Chitosan: Application to the Treatment of Liquid Waste. Eur. Polym. J. 2002, 38(8), 1523–1530.
  • Kaushik, A.;, et al. Iron Oxide Nanoparticles–Chitosan Composite based Glucose Biosensor. Biosens. Bioelectronics 2008, 24(4), 676–683.
  • Kang, X.;, et al. Glucose Oxidase–graphene–chitosan Modified Electrode for Direct Electrochemistry and Glucose Sensing. Biosens. Bioelectron. 2009, 25(4), 901–905.
  • Freire, T. M.;, et al. Fast Ultrasound Assisted Synthesis of Chitosan-based Magnetite Nanocomposites as a Modified Electrode Sensor. Carbohydr. Polym. 2016, 151, 760–769.
  • Derby, B.;. Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution. Annu. Rev. Mater. Res. 2010, 40, 395–414.
  • Özkan, M.;, et al. Rheological Characterization of Liquid Electrolytes for Drop-on-demand Inkjet Printing. Org. Electron. 2016, 38, 307–315.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.