202
Views
16
CrossRef citations to date
0
Altmetric
Articles

Improvement of thermal properties of micro head engine electroplated by graphene: experimental and thermal simulation

&
Pages 1612-1619 | Received 25 Jul 2018, Accepted 11 Feb 2019, Published online: 22 Mar 2019

References

  • Tamil Alagan, N.; Beno, T.; Hoier, P.; Klement, U.; Wretland, A. Influence of Surface Features for Increased Heat Dissipation on Tool Wear. Materials. (Basel). 2018, 11(5). DOI: 10.3390/ma11050664.
  • Mochizuki, M. Latest Development and Application of Heat Pipes for Electronics and Automotive. In 2017 IEEE CPMT Symposium Japan (ICSJ), Kyoto, Japan, IEEE, 2017; pp 87–90. DOI: 10.1109/ICSJ.2017.8240095.
  • Yu, W.; Duan, Z.; Zhang, G.; Liu, C.; Fan, S. Effect of an Auxiliary Plate on Passive Heat Dissipation of Carbon Nanotube-Based Materials. Nano. Lett. 2018, 18(3), 1770–1776. DOI: 10.1021/acs.nanolett.7b04933.
  • Xu, X. M.; Sun, X. D.; Hu, D. H.; Li, R. Z.; Tang, W. Research on Heat Dissipation Performance and Flow Characteristics of Air-Cooled Battery Pack. Int. J. Energy. Res. 2018. DOI: 10.1002/er.4113.
  • Yaqzan, M.; Rafat, Y.; Abdullah, S.; Alam, M. S. Thermal Management Solutions of Lithium-Ion Energy Storage Batteries for XEV Deployment in North India. In Lecture Notes in Electrical Engineering; Springer, Singapore, 2018; Vol. 487, pp 179–191. DOI: 10.1007/978-981-10-8249-8_16.
  • Xiaoming, X.; Wei, T.; Jiaqi, F.; Donghai, H.; Xudong, S. The Forced Air Cooling Heat Dissipation Performance of Different Battery Pack Bottom Duct. Int. J. Energy. Res. 2018. DOI: 10.1002/er.4114.
  • Wang, F.; Drzal, L. T.; Qin, Y.; Huang, Z. Mechanical Properties and Thermal Conductivity of Graphene Nanoplatelet/Epoxy Composites. J. Mater. Sci. 2015, 50(3), 1082–1093. DOI: 10.1007/s10853-014-8665-6.
  • Ghany, N. A. A.; Elsherif, S. A.; Handal, H. T. Revolution of Graphene for Different Applications: State-Of-the-Art. Surf. Interfaces. 2017, 9, 93–106. DOI: 10.1016/j.surfin.2017.08.004.
  • Li, G.; Hong, G.; Dong, D.; Song, W.; Zhang, X. Multiresponsive Graphene-Aerogel-Directed Phase-Change Smart Fibers. Adv. Mate. 2018, 1801754, 1–8. DOI: 10.1002/adma.201801754.
  • Aun, T. S.; Abdullah, M. Z.; Gunnasegaran, P. Influence of Low Concentration of Diamond Water Nanofluid in Loop Heat Pipe. Int. J. Heat. Technol. 2017, 35(3), 539–548. DOI: 10.18280/ijht.350310.
  • Chang, H.; Wu, H. Graphene-Based Nanomaterials: Synthesis, Properties, and Optical and Optoelectronic Applications. Adv. Funct. Mater. 2013, 23(16), 1984–1997. DOI: 10.1002/adfm.201202460.
  • Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior Thermal Conductivity of Single-Layer Graphene. Nano. Lett. 2008, 8(3), 902–907. DOI: 10.1021/nl0731872.
  • Balandin, A. A.; Ghosh, S.; Nika, D. L.; Pokatilov, E. P. Thermal Conduction in Suspended Graphene Layers. Fullerenes. Nanotubes. Carbon Nanostruct. 2010, 18(4–6), 474–486. DOI: 10.1080/1536383X.2010.487785.
  • Prashantha Kumar, H. G.; Anthony Xavior, M. Effect of Graphene Addition and Tribological Performance of Al 6061/Graphene Flake Composite. Tribol. Mater. Surf. Interfaces. 2017, 11(2), 88–97. DOI: 10.1080/17515831.2017.1329920.
  • Kawai, S.; Benassi, A.; Gnecco, E.; Söde, H.; Pawlak, R.; Feng, X.; Müllen, K.; Passerone, D.; Pignedoli, C. A.; Ruffieux, P., et al. Superlubricity of Graphene Nanoribbons on Gold Surfaces. Science.2016, 351(6276), 957–961. DOI: 10.1126/science.aad3569.
  • Choi, J. S.; Kim, J. S.; Byun, I. S.; Lee, D. H.; Lee, M. J.; Park, B. H.; Lee, C.; Yoon, D.; Cheong, H.; Lee, K. H., et al. Friction Anisotropy-Driven Domain Imaging on Exfoliated Monolayer Graphene. Science.2011, 333(6042), 607–610. DOI: 10.1126/science.1207110.
  • Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, Related Two-Dimensional Crystals, and Hybrid Systems for Energy Conversion and Storage. Science. 2015, 347(6217). DOI: 10.1126/science.1246501.
  • Voiry, D.; Yang, J.; Kupferberg, J.; Fullon, R.; Lee, C.; Jeong, H. Y.; Shin, H. S.; Chhowalla, M. High-Quality Graphene via Microwave Reduction of Solution-Exfoliated Graphene Oxide. Science. 2016, 353(6306), 1413–1416. DOI: 10.1126/science.aah3398.
  • Casano, G.; Piva, S. Parametric Analysis of a PCM Energy Storage System. Int. J. Heat. Technol. 2015, 33(4), 61–68. DOI: 10.18280/ijht.330408.
  • Justino, C. I. L.; Gomes, A. R.; Freitas, A. C.; Duarte, A. C.; Rocha-Santos, T. A. P. Graphene Based Sensors and Biosensors. TrAC - Trends Anal. Chem. 2017, 91, 53–66. DOI: 10.1016/j.trac.2017.04.003.
  • Antenucci, A.; Guarino, S.; Tagliaferri, V.; Ucciardello, N. Electro-Deposition of Graphene on Aluminium Open Cell Metal Foams. Mater. Des. 2015, 71, 78–84. DOI: 10.1016/j.matdes.2015.01.004.
  • Seong, H.; Kim, G.; Jeon, J.; Jeong, H.; Noh, J.; Kim, Y.; Kim, H.; Huh, S. Experimental Study on Characteristics of Grinded Graphene Nanofluids with Surfactants. Materials. Multidisciplinary Digital Publishing Institute (MDPI) June 4. 2018. DOI: 10.3390/ma11060950.
  • Ratajski, J.; Szparaga, L. On Transiotion Functions and Nonlinearity Measures in Gradient Coatings. J. Achiev. Mater. Manuf. Eng. 2012, 54(1), 83–92.
  • Ratajski, J.; Szparaga, L.; Zarychta, A. Multi Objective Optimization of Wear Resistant TiAlN and TiN Coatings Deposite by PVD Techniques. Arch. Mater. Sci. Eng. 2011, 48(1), 33–39.
  • Zhang, F.; Sun, D.; Xie, J.; Xu, S.; Huang, H.; Li, J.; Hou, H.; Wu, J. Application of Zirconia Thermal Barrier Coating on the Surface of Pulling-Straightening Roller. Int. J. Heat. Technol. 2017, 35(4), 765–772. DOI: 10.18280/ijht.350410.
  • Zhu, W.; Yang, L.; Guo, J. W.; Zhou, Y. C.; Lu, C. Determination of Interfacial Adhesion Energies of Thermal Barrier Coatings by Compression Test Combined with a Cohesive Zone Finite Element Model. Int. J. Plast. 2015, 64, 76–87. DOI: 10.1016/j.ijplas.2014.08.003.
  • Fanelli, P.; Montanari, R.; Rovatti, L.; Ucciardello, N.; Vivio, F.; Vullo, V. Microstructural Characterization and Modelling of Friction Stir Spot Welded Joints in 6082 Aluminium Alloy. Metallurgia. Italiana. 2011, 103(4), 43–49.
  • Buyukkaya, E.; Cerit, M. Thermal Analysis of a Ceramic Coating Diesel Engine Piston Using 3-D Finite Element Method. Surf. Coat. Technol. 2007, 202(2), 398–402. DOI: 10.1016/j.surfcoat.2007.06.006.
  • Formisano, A.; Boccarusso, L.; Capece Minutolo, F.; Carrino, L.; Durante, M.; Langella, A. Negative and Positive Incremental Forming: Comparison by Geometrical, Experimental, and FEM Considerations. Mater. Manuf. Processes. 2017, 32(5), 530–536. DOI: 10.1080/10426914.2016.1232810.
  • Khajehzadeh, M.; Razfar, M. R. FEM and Experimental Investigation of Cutting Force during UAT Using Multicoated Inserts. Mater. Manuf. Processes. 2015, 30(7), 858–867. DOI: 10.1080/10426914.2014.973590.
  • Salcedo, D.; Luis, C. J.; Puertas, I.; León, J.; Luri, R.; Fuertes, J. P. FEM Modelling and Experimental Analysis of an AA5083 Turbine Blade from ECAP Processed Material. Mater. Manuf. Processes. 2014, 29(4), 434–441. DOI: 10.1080/10426914.2013.864396.
  • Ramos, T.; Braga, D. F. O.; Eslami, S.; Tavares, P. J.; Moreira, P. M. G. P. Comparison between Finite Element Method Simulation, Digital Image Correlation and Strain Gauges Measurements in a 3-Point Bending Flexural Test. Procedia. Engineering. 2015, 114, 232–239. DOI: 10.1016/j.proeng.2015.08.063.
  • Almonti, D.; Simoncini, M.; Tagliaferri, V.; Ucciardello, N. Electro-Deposition of Graphene Nanoplatelets on CPU Cooler—Experimental and Numerical Investigation. Mater. Manuf. Processes. 2017, 33(2), 220–226. DOI: 10.1080/10426914.2017.1303165.
  • Callegaro, L.; Pennecchi, F.; Spazzini, P. G. Comparison of Calibration Curves Using the Lp Norm. Accredit. Qual. Assur. 2009, 14(11), 587–592. DOI: 10.1007/s00769-009-0525-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.