344
Views
27
CrossRef citations to date
0
Altmetric
Articles

Experimental investigation of dry, wet and cryogenic boring of AA 7075 alloy

, &
Pages 814-831 | Received 05 Dec 2018, Accepted 15 Mar 2019, Published online: 29 Apr 2019

References

  • Geng, H.;. Manufacturing Engineering Handbook; Mc-Graw-Hill Professional: New York, 2004.
  • Avila, R. F.; Abrao, A. M. The Effect of Cutting Fluids on the Machining of Hardened AISI 4340 Steel. Journal of Materials Processing Technology. 2001, 119(1–3), 21–26. DOI: 10.1016/S0924-0136(01)00891-3.
  • Milton Shaw, C.;. Metal Cutting Principles, Second edition ed.; Oxford University Press: New York, 2005.
  • Natasha, A. R.; Ghani, J. A.; Haron, C. H. C.; Syarif, J. The Effect of Cryogenic Application on Surface Integrity in Manufacturing Process: A Review. J. Appl. Sci. Res. 2012, 8(9), 4880–4890.
  • Kaynak, Y.; Lu, T.; Jawahir, I. S. Cryogenic Machining - Induced Surface Integrity: A Review and Comparison with Dry, MQL and Flood Cooled Machining. Mach. Sci. Technol. 2014, 18(2), 149–198. DOI: 10.1080/10910344.2014.897836.
  • Shokrani, A.; Dhokia, V.; Munoz Escalona, P.; Newman, S.-T. State of the Art Cryogenic Machining and Processing. Int J Comput Integr Manuf. 2013, 26(7), 616–648. DOI: 10.1080/0951192X.2012.749531.
  • Heinemann, R.; Hinduja, S.; Barrow, G.; Petuelli, G. Effect of MQL on the Tool Life of Small Twist Drills in Deep-Hole Drilling. Int. J. Mach. Tools Manuf. 2006, 46(1), 1–6. DOI: 10.1016/j.ijmachtools.2005.04.003.
  • Ravi, S.; Pradeep Kumar, M. Experimental Investigation of Cryogenic Cooling in Milling of AISI D3 Tool Steel. Mater. Manuf. Process. 2012, 27(10), 1017–1021. DOI: 10.1080/10426914.2011.654157.
  • Dhananchezian, M.; Pradeep Kumar, M. Cryogenic Turning of the Ti–6Al–4V Alloy with Modified Cutting Tool Inserts. Cryogenics. 2011, 51(1), 34–40. DOI: 10.1016/j.cryogenics.2010.10.011.
  • Vazquez, E.; Ciurana, J.; Rodríguez, C. A.; Thepsonthi, T.; Özel, T. Swarm Intelligent Selection and Optimization of Machining System Parameters for Micro-Channel Fabrication in Medical Devices. Mater. Manuf. Process. 2011, 26(3), 403–414. DOI: 10.1080/10426914.2010.520792.
  • Ciurana, J.; Arias, G.; Özel, T. Neural Network Modeling and Particle Swarm Optimization (PSO) of Process Parameters in Pulsed Laser Micromachining of Hardened AISI H13 Steel. Mater. Manuf. Process. 2009, 24(3), 358–368. DOI: 10.1080/10426910802679568.
  • Dhobe, M. M.; Chopde, I. K.; Gogte, C. L. Optimization of Wire Electro Discharge Machining Parameters for Improving Surface Finish of Cryogenic-Treated Tool Steel Using DOE. Mater. Manuf. Process. 2014, 29(11–12), 1381–1386. DOI: 10.1080/10426914.2014.930890.
  • Chorng-Jyh, T.; Yang, Y.-K. Determination of Optimal Parameters for SKD11 CNC Turning Process. Mater. Manuf. Process. 2007, 23(4), 363–368. DOI: 10.1080/10426910801937975.
  • Karakurt, I.; Aydin, G.; Aydiner, K. An Experimental Study on the Depth of Cut of Granite in Abrasive Waterjet Cutting. Mater. Manuf. Process. 2012, 27(5), 538–544. DOI: 10.1080/10426914.2011.593231.
  • Dhanabalan, S.; Sivakumar, K.; Narayanan, S. Analysis of Form Tolerances in Electrical Discharge Machining Process for Inconel 718 and 625. Mater. Manuf. Process. 2014, 29(3), 253–259. DOI: 10.1080/10426914.2013.852213.
  • Cajner, F.; Leskovsek, V.; Landek, D.; Cajner, H. Effect of Deep-Cryogenic Treatment on High Speed Steel Properties. Mater. Manuf. Process. 2009, 24(7–8), 743–746. DOI: 10.1080/10426910902809743.
  • Mokkoti, V. V.; Sankaraiah, G.; Yohan, M. Effect of Cryogenic Treatment of Tungsten Carbide Tools on Cutting Force and Power Consumption in CNC Milling Process. Prod. Manuf. Res. 2018, 6(1), 149–170. DOI: 10.1080/21693277.2018.1436011.
  • Hafeez, K.; Rowland, H.; Kanji, G.; Iqbal, S. Design Optimization Using ANOVA. J. Appl. Stat. 2002, 29(6), 895–906. DOI: 10.1080/02664760220136203.
  • Mehat, N. M.; Kamaruddin, S. Multi-Response Optimization of Injection Moulding Processing Parameters Using the Taguchi Method. Polym.-Plast. Technol. Eng. 2011, 50(15), 1519–1526. DOI: 10.1080/03602559.2011.603776.
  • Cyril Pilligrin, J.; Asokan Jerald, J.; Kanagaraj, G. Effects of Electrode Materials on Performance Measures of Electrical Discharge Micro-Machining. Mater. Manuf. Process. 2017, 33(6), 606–615. DOI: 10.1080/10426914.2017.1364757.
  • Balmurugan, K.; Uthayakumar, S.; Sankar, U.; Hreesh, S.; Warrier, G. K. Modeling and Surface Texturing on Surface Roughness in Machining LaPO4–Y2O3 Composite. Mater. Manuf. Process. 2017, 33(4), 405–413. DOI: 10.1080/10426914.2017.1291956.
  • Thankachan, T.; Soorya Prakash, K.; Loganathan, M. WEDM Process Parameter Optimization of FSPed copper-BN Composites. Mater. Manuf. Process. 2017, 33(3), 350–358. DOI: 10.1080/10426914.2017.1339311.
  • Choudhary, A.; Kumar, M.; Unune, D. R. Investigating Effects of Resistance Wire Heating on AISI 1023 Weldment Characteristics during ASAW. Mater. Manuf. Process. 2017, 33(7), 759–769. DOI: 10.1080/10426914.2017.1415441.
  • Goyal, R.; Singh, S.; Kumar, H. Performance Evaluation of Cryogenically Assisted Electric Discharge Machining (CEDM) Process. Mater. Manuf. Process. 2017, 33(4), 433–443. DOI: 10.1080/10426914.2017.1317789.
  • Singh, A.; Datta, S.; Mahapatra, S. S. Application of TOPSIS in the Taguchi Method for Optimal Machining Parameter Selection. J. Manuf. Sci. Production. 2011, 11, 49–60. DOI: 10.1515/jmsp.2011.002.
  • Temuçin, T.; Tozan, H.; Vayvay, O.; Harnicarova, M.; Valicek, J. A Fuzzy Based Decision Model for Non-Traditional Machining Process Selection. Int. J. Adv. Manuf. Technol. 2014, 70, 2275–2282. DOI: 10.1007/s00170-013-5474-z.
  • Sivapirakasam, S. P.; Mathew, J.; Surianarayanan, M. Multi-Attribute Decision Making for Green Electrical Discharge Machining. Expert Syst. Appl. 2011, 38(7), 8370–8374. DOI: 10.1016/j.eswa.2011.01.026.
  • Ozcan, T.; Celebi, N.; Esnaf, S. Comparative Analysis of Multi-Criteria Decision Making Methodologies and Implementation of a Warehouse Location Selection Problem. Expert Syst. Appl. 2011, 38, 9773–9779. DOI: 10.1016/j.eswa.2011.02.022.
  • Chau, O. L.; Parkan, C. Selection of A Manufacturing Process with Multiple Attributes - A Case Study. J. Eng. Technol. Manage. 1995, 12, 219–237. DOI: 10.1016/0923-4748(95)00011-7.
  • Chakladar, N. D.; Chakraborty, S. A Combined TOPSIS-AHP-method-based Approach for Non-Traditional Machining Processes Selection. J. Eng. Manuf. 1613-1623, 2008(222). DOI: 10.1243/09544054JEM1238.
  • Behzadian, M.; Otaghsara, S. K.; Yazdani, M.; Ignatius, J. A State-Of The-Art Survey of TOPSIS Applications. Expert Syst. Appl. 2012, 39, 13051–13069. DOI: 10.1016/j.eswa.2012.05.056.
  • Lan, T. S.;. Taguchi Optimization of Multi Objective CNC Machining Using TOPSIS. Inf. Technol. J. 2009, 8(6), 917–922. DOI: 10.3923/itj.2009.917.922.
  • Gauri, S. K.; Chakravorty, R.; Chakraborty, S. Optimization of Correlated Multiple Responses of Ultrasonic Machining (USM) Process. Int. J. Adv. Manuf. Technol. 2011, 53(9–12), 1115–1127. DOI: 10.1007/s00170-010-2905-y.
  • Durai Prabhakaran, R. T.; Babu, B. J. C.; Agrawal, V. P. Optimum Selection of a Composite Product System Using MADM Approach. Mater. Manuf. Processes. 2006, 21, 883–891. DOI: 10.1080/10426910600773472.
  • Rao, V. R.;. Machinability Evaluation of Work Materials Using a Combined Multiple Attribute Decision-Making Method. Int. J. Adv. Manuf. Technol. 2006, 28, 221–227. DOI: 10.1007/s00170-004-2348-4.
  • Chen, S. J.; Hwang, C. L. Fuzzy Multiple Attribute Decision Making Methods and Applications; Springer-Verlag: New York, 1992.
  • Hwang, C. L.; Yoon, K. Multiple Attribute Decision Making Methods and Applications; Springer-Verlag: Berlin, 1981. DOI: 10.1007/978-3-642-48318-9.
  • Kasdekar, D. K.; Parashar, V. MADM Approach for Optimization of Multiple Responses in EDM of EN-353 Steel. Int. J. Adv. Sci. Technol. 2015, 83, 59–70. DOI: 10.14257/ijast.2015.83.06.
  • Maity, S. R.; Chakraborty, S. Grinding Wheel Abrasive Material Selection Using Fuzzy TOPSIS Method. Mater. Manuf. Processes. 2013, 28, 408–417. DOI: 10.1080/10426914.2012.700159.
  • Yuvaraj, N.; Pradeep Kumar, M. Multiresponse Optimization of Abrasive Water Jet Cutting Process Parameters Using TOPSIS Approach. Mater. Manuf. Processes. 2014, 30(7), 882–889. DOI: 10.1080/10426914.2014.994763.
  • Abang, L. B.; Hameedullah, M. Selection of Lubricant Using Combine Multiple Attribute Decision Making Method. Adv. Prod. Eng. Manage. 2012, 7(1), 39–50. DOI: 10.14743/apem2012.1.129.
  • Patel, N. V.; Patel, R. K.; Patel, U. J.; Patel, B. P. Insert Selection for Turning Operation on CNC Turning Entre Using MADM Methods. Int. J. Latest Trends Eng. Technol. 2012, 1(3), 49–59.
  • Singarvel, B.; Selvaraj, T. Optimization of Machining Parameters in Turning Operation Using Combined TOPSIS and AHP Method. Tech. Gaz. 2015, 22, 1475–1480. DOI: 10.17559/TV-20140530140610.
  • Ravikumar, H.; Arun, P. L.; Thileepan, S. Analysis in Drilling of Al6061/20%SiCp Composites Using Grey Taguchi Based TOPSIS (GT-TOPSIS). Int. J. Chem. Tech. Res. CODEN (USA): IJCRGG. 2015, 8(12), 292–303.
  • Manivannan, R.; Pradeep Kumar, M. Multi-Attribute Decision-Making of Cryogenically Cooled micro-EDM Drilling Process Parameters Using TOPSIS Method. Mater. Manuf. Processes. 2016, 32(2), 209–215. DOI: 10.1080/10426914.2016.1176182.
  • Kumar, J.; Singh, G. S. Optimization of Machining Parameters of Titanium Alloy Steel Using: TOPSIS Method. Int. J. Sci. Res. Sci. Eng. Technol. 2016, 2(2), 1019–1022.
  • Outeiro, J. C.; Dias, A. M.; Lebrun, J. L. Experimental Assessment of Temperature in Distribution in Three Dimensional Cutting Process. Mach. Sci. Technol. 2004, 8(3), 357–376. DOI: 10.1081/MST-200038984.
  • Kilickap, E.; Huseyinoglu, M. Selection of Optimum Drilling Parameters on Burr Height Using Response Surface Methodology and Genetic Algorithm in Drilling of AISI 304 Stainless Steel. Mater. Manuf. Processes. 2010, 25, 1068–1076. DOI: 10.1080/10426911003720854.
  • Vázquez, E.; Ciurana, J.; Rodríguez, C. A.; Thepsonthi, T.; Özel, T. Swarm Intelligent Selection and Optimization of Machining System Parameters for Micro-Channel Fabrication in Medical Devices. Mater. Manuf. Processes. 2011, 26, 403–414. DOI: 10.1080/10426914.2010.520792.
  • Ciurana, J.; Arias, G.; Özel, T. Neural Network Modeling and Particle Swarm Optimization (PSO) of Process Parameters in Pulsed Laser Micromachining of Hardened AISI H13 Steel. Mater. Manuf. Processes. 2009, 29, 358–368. DOI: 10.1080/10426910802679568.
  • Ulutan, D.; Özel, T. Multi-Objective Optimization of Experimental and Simulated Residual Stresses in Turning of Nickel-Alloy IN100. Mater. Manuf. Process. 2013, 28(7), 835–841. DOI: 10.1080/10426914.2012.718474.
  • Pawar, P. J.; Rao, R. V.; Davim, J. P. Multiobjective Optimization of Grinding Process Parameters Using Particle Swarm Optimization Algorithm. Mater. Manuf. Processes. 2010, 25, 424–431. DOI: 10.1080/10426910903124860.
  • Olson, D. L.;. Comparison of Weights in TOPSIS Models. Math. Comput. Modell. 2004, 40, 721–727. DOI: 10.1016/j.mcm.2004.10.003.
  • Opricovic, S.; Tzeng, G. H. Compromise Solution by MCDM methods-A Comparative Analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 2004, 156, 445–455. DOI: 10.1016/S0377-2217(03)00020-1.
  • Figueira, J.; Roy, B. Determining the Weights of Criteria in the ELECTRE Type Methods with a Revised Simos’ Procedure. Eur. J. Oper. Res. 2002, 139, 317–326. DOI: 10.1016/S0377-2217(01)00370-8.
  • Zhang, S.; Ding, T. C.; Li, J. F. A Comparative Investigation on Surface Roughness and Residual Stress during End-Milling AISI H13 Steel with Different Geometrical Inserts. Mater. Manuf. Processes. 2010, 26(8), 1085–1093. DOI: 10.1080/10426914.2011.560223.
  • Kaynak, Y.; Tao, L.; Jawahir, I. S. Cryogenic Machining-Induced Surface Integrity: A Review and Comparison with Dry, MQL, and Flood-Cooled Machining. Mach. Sci. Technol. 2014, 18(2), 149–198. DOI: 10.1080/10910344.2014.897836.
  • Lin, J. L.; Lin, C. L. The Use of the Orthogonal Array with Grey Relational Analysis to Optimize the Electrical Discharge Machining Process with Multiple Performance Characteristics. Int. J. Mach. Tools Manuf. 2002, 42, 237–244. DOI: 10.1016/S0890-6955(01)00107-9.
  • Morelo, F.; Grabarski, M. I. Pailo Andre De Camargo Beltrao; Gluseppe Pintaude. Surface Integrity of Bored Super Duplex Stainless Steel SAF 2507. J. Braz. Soc. Mech. Sci. Eng. 2016, 39(7), 2649–2658. DOI: 10.1007/s40430-016-0642-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.