344
Views
16
CrossRef citations to date
0
Altmetric
Articles

Improvement in performance of cryogenically treated tungsten carbide tools in face milling of Ti-6Al-4V alloy

, &
Pages 598-607 | Received 04 Dec 2018, Accepted 17 Apr 2019, Published online: 14 May 2019

References

  • Shaw, M. C.; Cookson, J. O. Metal Cutting Principles; Oxford university press: New York, 2005; Vol. 2. pp 317–319
  • Ezugwu, E. O.; Wang, Z. M.; Machado, A. R. The Machinability of Nickel-Based Alloys: A Review. Journal of Materials Processing Technology. 1999, 86(1–3), 1–16. DOI: 10.1016/S0924-0136(98)00314-8.
  • Jaffery, S. H. I.; Mativenga, P. T. Wear Mechanisms Analysis for Turning Ti-6Al-4V—Towards the Development of Suitable Tool Coatings. Int. J. Adv. Manuf. Technol. 2012, 58(5–8), 479–493. DOI: 10.1007/s00170-011-3427-y.
  • Bhogal, S. S.; Kumar, V.; Dhami, S. S.; Pabla, B. S. Preparation and Properties of Electrodeposited Ni-TiO2 Composite Coating. J. Electrochem. Sci. Eng. 2015, 5(1), 37–45. DOI: 10.5599/jese.135.
  • Pervaiz, S.; Rashid, A.; Deiab, I.; Nicolescu, M. Influence of Tool Materials on Machinability of Titanium-And Nickel-Based Alloys: A Review. Mater. Manuf. Processes. 2014, 29(3), 219–252. DOI: 10.1080/10426914.2014.880460.
  • Ribeiro, M. V.; Moreira, M. R. V.; Ferreira, J. R. Optimization of Titanium Alloy (6al–4v) Machining. Journal of Materials Processing Technology. 2003, 143, 458–463. DOI: 10.1016/S0924-0136(03)00457-6.
  • Boyer, R. R.;. An Overview on the Use of Titanium in the Aerospace Industry. Mater. Sci. Eng. A. 1996, 213(1–2), 103–114. DOI: 10.1016/0921-5093(96)10233-1.
  • Donachie, M. J.;. Titanium: A Technical Guide; ASM international: Materials Park, OH, 2000; pp 13.
  • Saini, A.; Pabla, B. S.; Dhami, S. S. Developments in Cutting Tool Technology in Improving Machinability of Ti6Al4V Alloy: A Review. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2016, 230(11), 1977–1989. DOI: 10.1177/0954405416640176.
  • Barron, R. F.;. Cryogenic Treatment of Metals to Improve Wear Resistance. Cryogenics. 1982, 22(8), 409–413. DOI: 10.1016/0011-2275(82)90085-6.
  • Kalia, S.;. Cryogenic Processing: A Study of Materials at Low Temperatures. J. Low Temp. Phys. 2010, 158(5–6), 934–945. DOI: 10.1007/s10909-009-0058-x.
  • Strano, M.; Albertelli, P.; Chiappini, E.; Tirelli, S. Wear Behaviour of PVD Coated and Cryogenically Treated Tools for Ti-6Al-4V Turning. Int. J. Mater. Form. 2015, 8(4), 601–611. DOI: 10.1007/s12289-014-1215-6.
  • Lal, D. M.; Renganarayanan, S.; Kalanidhi, A. Cryogenic Treatment to Augment Wear Resistance of Tool and Die Steels. Cryogenics. 2001, 41(3), 149–155. DOI: 10.1016/S0011-2275(01)00065-0.
  • Gill, S. S.; Singh, H.; Singh, R.; Singh, J. Cryoprocessing of Cutting Tool Materials—A Review. Int. J. Adv. Manuf. Technol. 2010, 48(1–4), 175–192. DOI: 10.1007/s00170-009-2263-9.
  • Kalsi, N. S.; Sehgal, R.; Sharma, V. S. Cryogenic Treatment of Tool Materials: A Review. Mater. Manuf. Processes. 2010, 25(10), 1077–1100. DOI: 10.1080/10426911003720862.
  • Akincioğlu, S.; Gökkaya, H.; Uygur, İ. A Review of Cryogenic Treatment on Cutting Tools. Int. J. Adv. Manuf. Technol. 2015, 78(9–12), 1609–1627. DOI: 10.1007/s00170-014-6755-x.
  • Gill, S. S.; Singh, J.; Singh, H.; Singh, R. Metallurgical and Mechanical Characteristics of Cryogenically Treated Tungsten Carbide (Wc–Co). Int. J. Adv. Manuf. Technol. 2012, 58(1–4), 119–131. DOI: 10.1007/s00170-011-3369-4.
  • Deshpande, R. G.; Venugopal, K. A. Machining With Cryogenically Treated Carbide Cutting Tool Inserts. Mater. Today Proc. 2018, 5(1), 1872–1878.
  • Padmakumar, M.; Dinakaran, D.; Guruprasath, J. Characterization of Cryogenically Treated Cemented Carbide. Integr. Ferroelectr. 2017, 185(1), 65–72. DOI: 10.1080/10584587.2017.1370340.
  • Mukkoti, V. V.; Sankaraiah, G.; Yohan, M. Effect of Cryogenic Treatment of Tungsten Carbide Tools on Cutting Force and Power Consumption in CNC Milling Process. Prod. Manuf. Res. 2018, 6(1), 149–170. DOI: 10.1080/21693277.2018.1436011.
  • SreeramaReddy, T. V.; Sornakumar, T.; VenkataramaReddy, M.; Venkatram, R. Machining Performance of Low Temperature Treated P-30 Tungsten Carbide Cutting Tool Inserts. Cryogenics. 2008, 48(9–10), 458–461. DOI: 10.1016/j.cryogenics.2008.06.001.
  • Stratton, P. F.;. Optimising Nano-Carbide Precipitation in Tool Steels. Mater. Sci. Eng. A. 2007, 449, 809–812. DOI: 10.1016/j.msea.2006.01.162.
  • Seah, K. H. W.; Rahman, M.; Yong, K. H. Performance Evaluation of Cryogenically Treated Tungsten Carbide Cutting Tool Inserts. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2003, 217(1), 29–43. DOI: 10.1243/095440503762502260.
  • Gill, S. S.; Singh, J. Effect of Deep Cryogenic Treatment on Machinability of Titanium Alloy (Ti-6246) in Electric Discharge Drilling. Mater. Manuf. Processes. 2010, 25(6), 378–385. DOI: 10.1080/10426910903179914.
  • Gupta, K.; Laubscher, R. F. Sustainable Machining of Titanium Alloys: A Critical Review. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2017, 231(14), 2543–2560. DOI: 10.1177/0954405416634278.
  • Saini, A.; Chauhan, P.; Pabla, B. S.; Dhami, S. S. Multi-Process Parameter Optimization in Face Milling of Ti6al4v Alloy Using Response Surface Methodology. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2018, 232(9), 1590–1602. DOI: 10.1177/0954405416673682.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.