442
Views
14
CrossRef citations to date
0
Altmetric
Articles

Controlling the material removal and roughness of Inconel 718 in laser machining

ORCID Icon, , , , , & show all
Pages 1169-1181 | Received 06 Feb 2019, Accepted 01 May 2019, Published online: 16 May 2019

References

  • Lertora, E.; Mandolfino, C.; Gambaro, C. Mechanical Behaviour of Inconel 718 Thin-Walled Laser Welded Components for Aircraft Engines https://www.hindawi.com/journals/ijae/2014/721680/(accessed Jan 29, 2019). DOI: 10.1155/2014/721680.
  • Díaz-Álvarez, J.; Tapetado, A.; Vázquez, C.; Miguélez, H. Temperature Measurement and Numerical Prediction in Machining Inconel 718. Sensors. 2017, 17(7), 1531. DOI: 10.3390/s17071531.
  • Hegab, H.; Kishawy, H. A. Towards Sustainable Machining of Inconel 718 Using Nano-Fluid Minimum Quantity Lubrication. J. Manuf. Mater. Process. 2018, 2(3), 50. DOI: 10.3390/jmmp2030050.
  • Kim, T.-W.; Lee, C.-M. Determination of the Machining Parameters of Nickel-Based Alloys by High-Power Diode Laser. Int. J. Precis. Eng. Manuf. 2015, 16(2), 309–314. DOI: 10.1007/s12541-015-0041-1.
  • Youssef, H.A. Nontraditional Machining of Stainless Steels and Super Alloys. In Machining of Stainless Steels and Super Alloys; John Wiley & Sons, Ltd, 2016, 179–219. DOI:10.1002/9781118919514.ch8.
  • Wojciechowski, S.; Przestacki, D.; Chwalczuk, T. The Evaluation of Surface Integrity during Machining of Inconel 718 with Various Laser Assistance Strategies. MATEC Web Conf. 2017, 136, 01006. DOI: 10.1051/matecconf/201713601006.
  • Venkatesan, K.;. The Study on Force, Surface Integrity, Tool Life and Chip on Laser Assisted Machining of Inconel 718 Using Nd: YAGLaser Source. J. Adv. Res. 2017, 8(4), 407–423. DOI: 10.1016/j.jare.2017.05.004.
  • Venkatesan, K.; Ramanujam, R. Optimisation of Machining Parameters in Laser Aided Hybrid Machining of Inconel 718. Int. J. Mach. Mach. Mater. 2016, 18(3), 252–272. DOI: 10.1504/IJMMM.2016.076277.
  • Azhdari Tadavani, S.; Shoja Razavi, R.; Vafaei, R. Pulsed Laser-Assisted Machining of Inconel 718 Superalloy. Opt. Laser Technol. 2017, 87, 72–78. DOI: 10.1016/j.optlastec.2016.07.020.
  • Kim, E. J.; Lee, C. M. A Study on the Machining Characteristics of Curved Workpiece Using Laser-Assisted Milling with Different Tool Paths in Inconel 718. Metals. 2018, 8(11), 968. DOI: 10.3390/met8110968.
  • Kim, E. J.; Lee, C. M. A Study on the Optimal Machining Parameters of the Induction Assisted Milling with Inconel 718. Materials. 2019, 12(2), 233. DOI: 10.3390/ma12020233.
  • Ha, J.-H.; Lee, C.-M. A Study on the Thermal Effect by Multi Heat Sources and Machining Characteristics of Laser and Induction Assisted Milling. Materials. 2019, 12(7), 1032. DOI: 10.3390/ma12071032.
  • Parida, A. K. Analytical and Numerical Modeling of Hot Machining of Inconel 718. Am. J. Mech. Mater. Eng. 2017, 1(2), 49. DOI: 10.11648/j.ajmme.20170102.14.
  • Misal, N. D.; Sadaiah, M. Investigation on Surface Roughness of Inconel 718 in Photochemical Machining. https://www.hindawi.com/journals/amse/2017/3247873/ (accessed Jan 29, 2019). DOI: 10.1155/2017/3247873.
  • Wang, D.; He, B.; Cao, W. Enhancement of the Localization Effect during Electrochemical Machining of Inconel 718 by Using an Alkaline Solution. Appl. Sci. 2019, 9(4), 690. DOI: 10.3390/app9040690.
  • Rahul; Abhishek, K.; Datta, S.; Biswal, B. B.; Mahapatra, S. S. Machining Performance Optimization for Electro-Discharge Machining of Inconel 601, 625, 718 and 825: An Integrated Optimization Route Combining Satisfaction Function, Fuzzy Inference System and Taguchi Approach. J. Braz. Soc. Mech. Sci. Eng. 2017, 39(9), 3499–3527. DOI: 10.1007/s40430-016-0659-7.
  • Arrizubieta, J. I.; Cortina, M.; Ruiz, J. E.; Lamikiz, A. Combination of Laser Material Deposition and Laser Surface Processes for the Holistic Manufacture of Inconel 718 Components. Mater. Basel Switz. 2018, 11(7). DOI: 10.3390/ma11071247.
  • Rashid, M. A.; Rahman, M.; Kumar, A. S. A Study on Compound Micromachining Using Laser and Electric Discharge Machining (EDM). Adv. Mater. Process. Technol. 2016, 2(2), 258–265. DOI: 10.1080/2374068X.2016.1164531.
  • Lange, K.; Hördemann, C.; Schulz‐Ruhtenberg, M.; Caro, J. Porous Nickel Nano-Foam by Femtosecond Laser Structuring for Supercapacitor Application. Chem. Eur. J. 2018, 5(23), 3688–3694. DOI: 10.1002/celc.201801152.
  • Framil Carpeño, D.; Dickinson, M.; Seal, C.; Hyland, M. Induced Hydrophobicity in Micro- and Nanostructured Nickel Thin Films Obtained by Ultraviolet Pulsed Laser Treatment. Phys. Status Solidi A. 2016, 213(10), 2709–2713. DOI: 10.1002/pssa.201600101.
  • Perry, T. L.; Werschmoeller, D.; Duffie, N. A.; Li, X.; Pfefferkorn, F. E. Examination of Selective Pulsed Laser Micropolishing on Microfabricated Nickel Samples Using Spatial Frequency Analysis. J. Manuf. Sci. Eng. 2009, 131(2), 021002–021002–021009. DOI: 10.1115/1.3075874.
  • Choi, H.; Li, X. Experimental Investigations of Laser Micromachining of Nickel Using Thin Film Micro Thermocouples. J. Manuf. Sci. Eng. 2008, 130(2), 021002–021002–021008. DOI: 10.1115/1.2816021.
  • Hossain, A.; Hossain, A.; Nukman, Y.; Hassan, M. A.; Harizam, M. Z.; Sifullah, A. M.; Parandoush, P. A Fuzzy Logic-Based Prediction Model for Kerf Width in Laser Beam Machining. Mater. Manuf. Process. 2016, 31(5), 679–684. DOI: 10.1080/10426914.2015.1037901.
  • Kumar, A.; Singh, H.; Kumar, V. Study the Parametric Effect of Abrasive Water Jet Machining on Surface Roughness of Inconel 718 Using RSM-BBD Techniques. Mater. Manuf. Process. 2018, 33(13), 1483–1490. DOI: 10.1080/10426914.2017.1401727.
  • Dhaker, K. L.; Pandey, A. K. Particle Swarm Optimisation of Hole Quality Characteristics in Laser Trepan Drilling of Inconel 718. Def. Sci. J. 2019, 69(1), 37–45. DOI: 10.14429/dsj.69.12879.
  • Wu, Q.; Ma, Y.; Jie, J.; Yu, Q.; Liao, Y.; Fang, R.; Chen, X.; Wang, K. Hole Drilling of Inconel 718 by High Intensity Pulsed Ultraviolet Laser. J. Laser Appl. 2003, 15(3), 168–171. DOI: 10.2351/1.1589768.
  • Orazi, L.; Cuccolini, G.; Tani, G. Automatic Characterization of the Material Removal Rate in Laser Manufacturing of TiAl6V4 and Inconel 718. ASME Int. Manuf. Sci. Eng. Conf. 2009, 807–816. DOI: 10.1115/MSEC2009-84181.
  • Kim, D.-H.; Lee, C.-M. A Study of Cutting Force and Preheating-Temperature Prediction for Laser-Assisted Milling of Inconel 718 and AISI 1045 Steel. Int. J. Heat Mass Transf. 2014, 71, 264–274. DOI: 10.1016/j.ijheatmasstransfer.2013.12.021.
  • Greene, G. A.; Finfrock, C. C.; Irvine, J. T. F. Total Hemispherical Emissivity of Oxidized Inconel 718 in the Temperature Range 300–1000°C. Exp. Therm. Fluid Sci. 2000, 22(3–4), 145–153. DOI: 10.1016/S0894-1777(00)00021-2.
  • Sainte-Catherine, C.; Jeandin, M.; Kechemair, D.; Ricaud, J.-P.; Sabatier, L. Study of Dynamic Absorptivity at 10.6 µm (CO2) and 1.06 µm (Nd-Yag) Wavelengths as a Function of Temperature. J. Phys. IV. 1991, 01(C7), 151–157. DOI: 10.1051/jp4:1991741.
  • Abdo, B. M. A.; El-Tamimi, A. M.; Anwar, S.; Umer, U.; Alahmari, A. M.; Ghaleb, M. A. Experimental Investigation and Multi-Objective Optimization of Nd: YAGLaser Micro-Channeling Process of Zirconia Dental Ceramic. Int. J. Adv. Manuf. Technol. 2018, 98(5), 2213–2230. DOI: 10.1007/s00170-018-2374-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.